Conference paper Open Access

A Low-Complexity Dual Trellis Decoding Algorithm for High-Rate Convolutional Codes

Son Le, V.; Abdel Nour, C.; Douillard, C.; Boutillon, E.


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Son Le, V.</dc:creator>
  <dc:creator>Abdel Nour, C.</dc:creator>
  <dc:creator>Douillard, C.</dc:creator>
  <dc:creator>Boutillon, E.</dc:creator>
  <dc:date>2020-08-04</dc:date>
  <dc:description>Decoding using the dual trellis is considered as a potential technique to increase the throughput of soft-input soft-output decoders for high coding rate convolutional codes. However, the dual Log-MAP algorithm suffers from a high decoding complexity. More specifically, the source of complexity comes from the soft-output unit, which has to handle a high number of extrinsic values in parallel. In this paper, we present a new low-complexity sub-optimal decoding algorithm using the dual trellis, namely the dual Max-Log-MAP algorithm, suited for high coding rate convolutional codes. A complexity analysis and simulation results are provided to compare the dual Max- Log-MAP and the dual Log-MAP algorithms. Despite a minor loss of about 0.2 dB in performance, the dual Max-Log-MAP algorithm significantly reduces the decoder complexity and makes it a first-choice algorithm for high-throughput high-rate decoding of convolutional and turbo codes.</dc:description>
  <dc:identifier>https://zenodo.org/record/3971729</dc:identifier>
  <dc:identifier>10.5281/zenodo.3971729</dc:identifier>
  <dc:identifier>oai:zenodo.org:3971729</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/760150/</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3971728</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/epic_h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Convolutional codes</dc:subject>
  <dc:subject>High coding rate</dc:subject>
  <dc:subject>Dual trellis</dc:subject>
  <dc:subject>High-throughput decoder</dc:subject>
  <dc:subject>Low-complexity decoder</dc:subject>
  <dc:subject>Turbo codes</dc:subject>
  <dc:title>A Low-Complexity Dual Trellis Decoding Algorithm for High-Rate Convolutional Codes</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePaper</dc:type>
  <dc:type>publication-conferencepaper</dc:type>
</oai_dc:dc>
41
15
views
downloads
All versions This version
Views 4141
Downloads 1515
Data volume 5.6 MB5.6 MB
Unique views 3939
Unique downloads 1515

Share

Cite as