Conference paper Open Access

FULLY PIPELINED ITERATION UNROLLED DECODERS - THE ROAD TO TB/S TURBO DECODING

Weithoffer, S.; Klaimi, R.; Nour, C.; Wehn, N.; Douillard, C.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Beyond 5G</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Turbo Decoding</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">High-Throughput</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Hardware Architecture</subfield>
  </datafield>
  <controlfield tag="005">20200805005921.0</controlfield>
  <controlfield tag="001">3971713</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">4-8 May, 2020</subfield>
    <subfield code="g">ICASSP 2020</subfield>
    <subfield code="a">45th International Conference on Acoustics, Speech, and Signal Processing</subfield>
    <subfield code="c">Virtual</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IMT Atlantique</subfield>
    <subfield code="a">Klaimi, R.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IMT Atlantique</subfield>
    <subfield code="a">Nour, C.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Technical University Kaiserslautern</subfield>
    <subfield code="a">Wehn, N.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IMT Atlantique</subfield>
    <subfield code="a">Douillard, C.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">612267</subfield>
    <subfield code="z">md5:c2ab336c99ff02078ea610efa4015bb4</subfield>
    <subfield code="u">https://zenodo.org/record/3971713/files/Paper_ICASSP_TB_TUKL.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://2020.ieeeicassp.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-08-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-epic_h2020</subfield>
    <subfield code="o">oai:zenodo.org:3971713</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">IMT Atlantique</subfield>
    <subfield code="a">Weithoffer, S.</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">FULLY PIPELINED ITERATION UNROLLED DECODERS - THE ROAD TO TB/S TURBO DECODING</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-epic_h2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">760150</subfield>
    <subfield code="a">Enabling Practical Wireless Tb/s Communications with Next Generation Channel Coding</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Turbo codes are a well-known code class used for example in the LTE mobile communications standard. They provide built-in rate flexibility and a low-complexity and fast encoding. However, the serial nature of their decoding algorithm makes high-throughput hardware implementations difficult. In this paper, we present recent findings on the implementation of ultra-high throughput Turbo decoders. We illustrate how functional parallelization at the iteration level can achieve a throughput of several hundred Gb/s in 28 nm technology. Our results show that, by spatially parallelizing the half-iteration stages of fully pipelined iteration unrolled decoders into X-windows of size 32, an area reduction of 40% can be achieved. We further evaluate the area savings through further reduction of the X-window size. Lastly, we show how the area complexity and the throughput of the fully pipelined iteration unrolled architecture scale to larger frame sizes. We consider the same target bit error rate performance for all frame sizes and highlight the direct correlation to area consumption.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3971712</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3971713</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
10
7
views
downloads
All versions This version
Views 1010
Downloads 77
Data volume 4.3 MB4.3 MB
Unique views 1010
Unique downloads 77

Share

Cite as