
Proteases of Nicotiana benthamiana: an emerging battle
for molecular farming
Philippe V Jutras, Isobel Dodds and Renier AL van der Hoorn

Available online at www.sciencedirect.com

ScienceDirect
Molecular farming increasingly uses the tobacco relative

Nicotiana benthamiana for production of recombinant proteins

through transient expression. Several proteins are produced

efficiently with this expression platform, but yields for other

proteins are often very low. These low yields are frequently due

to endogenous proteases. The latest genome annotations

indicate that N. benthamiana encodes for at least 1243 putative

proteases that probably act redundantly and consecutively on

substrates in different subcellular compartments. Here, we

discuss the N. benthamiana protease repertoire that may affect

recombinant protein production and recent advances in

protease depletion strategies to increase recombinant protein

production in N. benthamiana.
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Proteases are ubiquitous in all organisms and fundamental

for life. Proteases remove denatured and inactivated pro-

teins and release amino acids for recycling but they also

cleave proteins to regulate their activity and subcellular

localisation [1,2]. In plants, many cellular functions require

proteolytic enzymes, including seed germination, growth,

development, and defence [3,4]. Plant genomes encode for

hundreds of proteases that are tightly regulated and impli-

cated in different responses to environmental or develop-

mental stimuli, including senescence [5].

Recombinant plant-expressed proteins are frequently

targeted by plant proteases, resulting in the partial or

complete hydrolysis of proteins. The purified product is,

consequently, a mixture of full-length proteins and
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degradation fragments and these mixtures compromise

the commercial value of the product [6�].

Over the past decades, different strategies have been

taken to reduce the negative impact of plant proteases

on recombinant protein production in planta [7]. Here, we

review the protease repertoire of Nicotiana benthamiana
and the most recent strategies used to deplete these

protease activities in N. benthamiana.

The proteases of N. benthamiana
N.benthamiana is anAustralian relativeof tobacco (Nicotiana
tabacum) that has been embraced by the plant science

community as a model plant for over two decades for its

ease of manipulation by transient expression and RNA

interference. This plant is favourite for agroinfiltration

because its large leaves can be infiltrated easily and

responses to Agrobacterium tumefaciens are relatively weak,

whereas its RNAi system is hampered, supporting high

transcript levels of transgenes [8�]. N. benthamiana is also

easy to transform and manipulate by genome editing and

virus-induced gene silencing (VIGS) [9,10]. A complica-

tion, however, is the complex genome of N. benthamiana
because it is an ancientalloploidwith a doublegene set [11].

We have recently improved the annotation of the N.
benthamiana genome [12��] and here we used this annota-

tion to classify the putative proteases of N. benthamiana
using PFAM [13] and the MEROPS classification [14].

The core proteome (NbD dataset) of N. benthamiana
contains 1243 putative proteases, with an additional

512 putative proteases in the supplemental dataset

(NbE dataset). These supplemental proteases are

>70% identical to proteins of the core proteome and will

include homeologs, allelic variants and sequencing errors.

The core putative proteases include 165 aspartic (Asp)

proteases, 307 cysteine (Cys) proteases, 66 threonine (Thr

proteases), 207 metalloproteases and 498 serine (Ser)

proteases (Figure 1a). This grouping into different cata-

lytic classes is based on the catalytic mechanism of these

enzymes. For instance, Cys, Thr and Ser proteases use a

catalytic Cys, Thr or Ser residue to attack the peptide

bond, respectively, whereas Asp and metalloproteases use

Asp residues or a metal ion to activate a water molecule to

perform the nucleophilic attack (Figure 1a).

Following the MEROPS principle [14], the proteases are

further subdivided into families that share sufficient

sequence homology to the type member of that family.

Different families are grouped together in a clan if there is
www.sciencedirect.com

mailto:renier.vanderhoorn@plants.ox.ac.uk
mailto:renier.vanderhoorn@plants.ox.ac.uk
http://www.sciencedirect.com/science/journal/09581669/61
https://doi.org/10.1016/j.copbio.2020.02.012
https://doi.org/10.1016/j.copbio.2019.10.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2019.10.006&domain=pdf
http://www.sciencedirect.com/science/journal/09581669


Proteases and recombinant protein degradation Jutras, Dodds and van der Hoorn 61

Figure 1

(a)

(c)

(d)

(b)

nucleophile

Nucleohile

scissile bond
oxyanion hole

OxyanionClass

endopeptidase

aminopeptidase carboxypeptidase

exopeptidases

cleavable bond

Current Opinion in Biotechnology

Protease nomenclature and putative proteases of Nicotiana benthamiana.

(a) Classification of 1243 putative proteases of N. benthamiana into the five main catalytic classes, explained mechanistically below the pie-graph.

(b) Further grouping of N. benthamiana into families and clans, following the MEROPS principles. The number of genes per family is shown for the

core proteome (NbD, black) and supplemental proteome (NbE, grey). The latest proteome annotation of N. benthamiana [12��] was searched for

PFAM domains that define the different protease families. Several relevant protease families are highlighted. (c) Nomenclature of endo/exo and

amino/carboxy peptidases. (d) Nomenclature of P-sites and S-sites relative to the cleavable bond.
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evidence that they are evolutionary related, for example,

because they share the same fold or carry similar

sequence motifs. Like most angiosperms, N. benthamiana
has representatives of proteases of 70 families that group

into 29 different clans (Figure 1b). The S8 subtilases, S9

prolyl oligopeptidases and A1 pepsins comprise the larg-

est families of putative proteases of N. benthamiana
(Figure 1b).

Proteases are also often classified into endopeptidases and

exopeptidases (Figure 1c) but both versions can exist

within the same protease family and so this annotation

requires experimentation. A classification based on cleav-

age site specificity is not possible because cleavage sites

are notoriously difficult to predict. Because proteins are

folded, proteases do not act like restriction enzymes

cleaving DNA. Proteases rather attack unstructured

regions, often loops between structured regions in pro-

teins and select cleavage sites using substrate binding

pockets (S-pockets) that recognise residues before and

after the cleavage site (residues P and P’, respectively,

Figure 1d). However, not every substrate residue flanking

the cleavage site is recognised by every protease family.

C1A papain-like proteases, for instance, select for resi-

dues at the P2 position and do not interact much with P1

residues, whereas S8 subtilase-like proteases often select

for specific residues at the P1 position. In addition, the

substrate binding pockets are often promiscuous binding

sites, making substrate prediction by motif searches

notoriously challenging.

Not all proteases are thought to affect recombinant pro-

tein degradation. Organelle-specific proteases, for

instance, are unlikely to affect degradation of secreted

recombinant proteins. Also, many proteases are not

expressed in leaves, or not active at molecular farming

conditions. The proteases that seem to affect the accu-

mulation of recombinant proteins the most are papain-

like Cys proteases (PLCPs, family C1A), subtilisins

(SBTs, family S8), and pepsin-like Asp proteases (family

A1). These proteases are abundant in leaves, can have a

broad substrate specificity, and accumulate in subcellular

compartments where glycosylated recombinant proteins

reside [15�]. Different strategies have been taken to
Table 1

Protease inhibitors used for molecular farming in N. benthamiana and

Family Name 

Cys proteases SlCYS8 

Oryzacystatin I 

NbPR4 

Ser proteases Bowman-Birk Serine protease inhibit

Protease Inhibitor II 

NbPot1 

Ser / Asp proteases Cathepsin D inhibitor 

Metalloproteases HsTIMP 
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deplete these and other proteases from N. benthamiana,
with varying success. These strategies are discussed in

the following sections.

Protease depletion with protease inhibitors
Several studies have shown that co-expression of protease

inhibitors increases the yield of recombinant proteins

(Table 1). Protease inhibitors can have a relatively broad

activity spectrum and can inhibit populations of function-

ally related proteases in plant tissues [16,17]. For

instance, PLCPs are inhibited by cystatins (I12 family),

which are protease inhibitors harbouring a conserved

Gln-Xaa-Val-Xaa-Gly (QxVxG) motif [18]. The tomato

cystatin SlCYS8 was used to improve the yield of fully

assembled and biologically active fragments of IgG anti-

bodies transiently expressed in N. benthamiana [19–21].

An inactive version of SlCYS8 showed no protective

effect on recombinant proteins, indicating that the stabi-

lising effect is accomplished through protease inhibition

[20,22]. A chimeric version of SlCYS8, the ‘Cysta-tag’, has

also been designed to combine its inhibition potential

with routine protein purification techniques [23]. The

Cysta-tag provides a convenient way to efficiently and

cost-effectively purify recombinant proteins from plants.

Other classes of protease inhibitors targeting Ser proteases

and metalloproteases also increase the accumulation of

recombinant proteins. Recently, three protease inhibitors

of these classes significantly increased the accumulation of

three unrelated recombinant proteins: a-galactosidase (a

glycoenzyme), erythropoietin (a glycohormone) and

VRC01 (an IgG antibody) [21]. N. benthamiana NbPR4,

NbPot1 and human HsTIMP are thought to inhibit Cys,

Ser and metalloproteases, respectively [21]. However, in

contrast to SlCYS8, NbPR4, NbPot1 and HsTIMP do not

affect activity profiles of Ser proteases or PLCPs, indicating

that perhaps another, yet uncharacterised mechanism may

explain how unrelated protease inhibitors can improve

recombinant protein accumulation.

Protease depletion by changing pH
The hydrolytic activity of broad-spectrum Cys, Ser and

Asp proteases is generally influenced by the pH. For

instance, Vacuolar Processing Enzymes (VPEs) have a
 other Solanaceae

Origin Reference

Solanum lycopersicum [20]

Glycine max [24]

Nicotiana benthamiana [21]

or Glycine max [25]

Nicotiana alata [26]

Nicotiana benthamiana [21]

Solanum lycopersicum [27]

Homo sapiens [21]
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unique pH-dependent two-chain state which regulates

their protease and ligase activity [28]. Likewise, PLCPs

are produced as inactive pro-proteases that often auto-

catalytically mature in low-pH environments [29].

Regulating pH in the plant secretory pathway has

recently been used to reduce the proteolytic degradation

of recombinant proteins in plants. Partial neutralisation

of the Golgi lumen pH by ectopic expression of Influ-

enza virus M2 proton channel stabilises acid-labile

recombinant proteins and peptides in leaf cells [30].

The M2 protein forms tetrameric pH-activated trans-

membrane channels and increases pH in the Golgi

lumen of infected mammalian and plant cells [30,31].

Transient co-expression assays with fusion protein

hybrids showed a significant alteration of host protease

activities upon M2 channel expression [32]. However,

M2 also alters the steady-state levels of proteins in

different cellular compartments and attenuates the plant

defence response upon agroinfiltration [33].

Protease depletion by gene knockdown/out
Several proteases have been depleted by RNA interfer-

ence approaches to improve recombinant protein produc-

tion in N. benthamiana. For instance, Mandal et al.
depleted the most abundant aspartic, cysteine and

metallo proteases simultaneously in tobacco BY-2 cell

cultures using multitarget antisense silencing to obtain a

cell culture that produces higher levels of antibody 2F5

[34]. Similarly, Duwadi et al. generated antisense tobacco

plants for ten different Cys proteases and found that

silencing of Cys6 could increase levels of interleukin

IL-10 expression [35].

Genome editing of higher plants has significantly

improved over the past years. Sequence-specific nucle-

ase systems, such as TALEN and CRISPR/Cas, can

target multiple genes and precisely modify the plant

cell environment [36]. To date, this technology has been

applied mainly to suppress the production of N.
benthamiana-specific glycans, which are often undesir-

able in molecular farming [37]. For instance, CRISPR/

Cas-mediated knockout of six glycosyltransferase genes

in N. benthamiana recently allowed the production of a

glyco-engineered antibody lacking plant N-linked gly-

cans [36]. The same strategy could be used to target

protease genes and to generate plants with protease

depleted environments.

Future perspectives
Protease characterisation remains challenging as their

roles in plants, including their subcellular localisation

and target proteins, are mostly unknown. A major limiting

factor to our understanding of protease roles is the lack of

identified relevant substrates [38�]. Combinations of dif-

ferent experimental strategies are necessary to reveal the

physiological substrates and hence, the molecular
www.sciencedirect.com 
functions of plant proteases. Quantitative mass spectrom-

etry-based proteomics enables large-scale interrogation of

plant proteomes and allows the identification of protease

cleavage sites and determination of protease sequence

specificity [39,40]. Biochemical profiling of active sites

using proteome-derived peptide libraries in combination

with quantitative proteomics is useful to simultaneously

identify N-terminal and C-terminal cleavage motifs [41].

Activity-based protein profiling (ABPP) is also increas-

ingly used to uncover the active proteome using tagged

chemical probes that react covalently and irreversibly

with the active site of proteins [22,42]. These collective

efforts to identify substrates and decipher protease func-

tions will create new opportunities for plant biotechnol-

ogy applications.

Plant molecular farming has proven its potential to

express recombinant proteins at a high level, and many

complex proteins are now produced in plants. Plant

proteases are key players in recombinant protein degra-

dation, limiting the development of plant-based expres-

sion systems. Future research addressing the problem of

unwanted proteolysis will undoubtedly make a high

impact on the commercialisation of relevant pharmaceu-

tical and non-pharmaceutical products expressed in

plants.
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