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Abstract. Code generation is gaining popularity as a technique to bridge
the gap between high-level models and executable code. We describe the
theory underlying the PVS2C code generator that translates functional
programs written using the PVS specification language to standalone,
efficiently executable C code. We outline a correctness argument for the
code generator. The techniques used are quite generic and can be applied
to transform programs written in functional languages into imperative
code. We use a formal model of reference counting to capture memory
management and safe destructive updates for a simple first-order func-
tional language with arrays. We exhibit a bisimulation between the func-
tional execution and the imperative execution. This bisimulation shows
that the generated imperative program returns the same result as the
functional program.

1 Introduction

Functional languages offer a convenient and expressive notation for defining pro-
grams in a form that is referentially transparent and amenable to mathematical
proof. One way of implementing a functional language on a machine is to trans-
form a given program into a corresponding program in an imperative program-
ming language. There are two key challenges in defining such a transformation.
One, the evaluation of expressions in a functional language is pure, so that up-
dating an array creates a fresh copy of the array being updated. Replacing such
an update with a destructive, in-place update is not always sound. Two, allo-
cated structures like arrays have to be garbage collected when they are no longer
referenced in the evaluation.

We are interested in proving the correctness of a transformation from a func-
tional program to a self-contained imperative program that executes efficiently
and performs its own memory management. To this end, we use a transformation
that employs reference counting for managing memory as well as for identifying
opportunities for safe destructive updates during execution. The transformation
is enabled by a light static analysis on the input functional program. This anal-
ysis helps release references as soon as possible in order to maximize the oppor-
tunities for destructive updates. We present a proof method for demonstrating
the correctness of the transformation and a formalization of the correctness of a



transformation from a small functional language to a C-like imperative language.
The transformation from functional to self-contained imperative code forms the
core of the PVS2C code generator [10J23]. Such transformations and the inter-
mediate languages used in them are of foundational interest and practical utility
for the generation of efficient code from executable fragments of specification
and modelling languages.

Since code generators are becoming increasingly popular, it is important to
ensure that they can be backed with simple, easily verifiable correctness proofs.
The correctness of the transformation from a functional to an imperative lan-
guage is carried out in multiple steps. The source language FL for our code gen-
erator is an idealized first-order functional language where programs are written
in A-normal form [II]. This language is lightly typed and can serve as an in-
termediate language for multiple source languages. The operational semantics is
presented in terms of reductions within an evaluation context [9]. This semantics
is pure: each array update allocates a new array and copies the contents of the
old array and performs the update on the copy.

We next define the operational semantics of an annotated variant RL of FIL
that exploits reference counting and destructive updates. We exhibit a bisimi-
larity between the FL and RL operational semantics so that these two forms of
evaluation always yield the same value, when either evaluation terminates. The
correspondence between FL and RL has been already been verified in PVS.

Next, we define a translation from annotated FL to an imperative language
KL. The latter language is inspired by the operational semantics given by Appel
and Blazy [I]. The language KL uses explicit assignments and the operational se-
mantics employs continuations so that there is a significant semantic gap between
RL executions and their KL counterparts. Even so, we exhibit a bisimulation be-
tween the operational semantics for the reference counting execution of RL and
that of the imperative language KLE

We give a brief overview of languages, the code generator, and the correctness
arguments. Consider the F'L program swap which swaps two elements of an array.

swap(u,4,j) = let a = ulf]
in let b = u[j]
in let u' = ufi — ]
inu/[j — a

The body of the definition is in A-normal form [I1]. The array access and update
operations are applied to arguments that are variables. Our A-normal form is
unflattened so that the expressions e; and e in a let-expression let £ = e; in es
are both recursively in A-normal form.

4 We had initially used a different semantics for the imperative language based on call
stacks and program counters that is closer to the machine execution, but this led
to a fairly cumbersome definition of the bisimulation. We found the mechanization
(https://github.com/SRI-CSL/PVSCodegen) of the correspondence quite challeng-
ing. The correspondence given here between RL and KL executions has not yet
been formalized using a proof assistant, but we expect it to be a significantly easier
exercise.


https://github.com/SRI-CSL/PVSCodegen

Given a body of definitions A of the above form, we would like to evaluate
an expression given in A-normal form. The evaluation of an expression e can be
carried out with respect to a stack S which binds variables to values (integers
or references) and a store which maps references to arrays. For example if the
expression e is let & = y[i — k] in z[i], where the subexpression y[i — k|
denotes the result of updating the array y at ¢ with k. Let us assume that we
are evaluating e with a stack S of the form (y — 7,7 — 2,k + 5) and a store
M given by the map {ro — A}, where A is the array (1,2, 3). The expression
e can be viewed as an evaluation context let x = O in z[i] with a single hole
O, and a redex y[i — k] filling the hole. The operational semantics is given
as a set of rewrite rules on the triple (d, S, M) for redex d, stack S, and store
M. In this case, the reduction yields a reference r; and a new store M’ that
extends M with the map {r; — (1,2,5)}. The new state now has the expression
let © = 7y in z[i], which contains an explicit reference, namely, the reference
resulting from the prior reduction. This expression is a redex by itself. Reducing
this redex with stack S and store M’ yields the expression pop(x[i]), the new
stack (x — r1,y — 19,1 — 2,k — 5), and the same store M. The operation pop
is a book-keeping operation used to pop the stack at the end of the evaluation
of the body of the let-expression. The subexpression xz[i] is a redex and reduces
to 5, and finally the redex pop(5) is reduced by popping the binding for x off
the stack to yield the value 5 and the resulting stack S and store M’.

The reference counting semantics maintains a count for each reference in the
domain of the store M. The RL expression being evaluated is annotated so that
the last lexical occurrence of a variable along any evaluation path is marked
(i.e., underlined). For example, the expression e above would be annotated as
let x = y[i — k] in z[i]. If we evaluate this expression with a stack S as above,
and a store M of the form {ro +— [1,2, 3]}, and a reference count C' of the form
{ro — 1}. With this, the redex y[i — k] is reduced to g, the new stack S’ is
of the form (y + nil,i + 2,k + 5), the new store M’ is just {ro — (1,2,5)},
and the new reference count C’ is {ro — 1}. In other words, we can perform
the update in place since the variable y is marked and its reference count is 1,
indicating that there are no further uses of the reference ry in the evaluation
nor for the stack binding of the variable y in the stack. If the variable y is
unmarked or the corresponding reference ry has a count greater than 1, then we
need to create a (shallow) copy of the array before updating it. The next step
of evaluation binds z to 7o in the stack and continues executing as above. When
the redex z[i] is evaluated, the reference count for ry becomes 0, and the array
is freed. Here, the array contains integers, but if the array being freed contains
references, these references need to have their reference counts decremented. The
bisimulation between the pure evaluation and the reference counting destructive
evaluation shows that the reference count is tracked accurately. It also shows
that there is a map from the references in the destructive evaluation to those in
the pure evaluation such that the corresponding expressions, stacks, and stores
match.

The next step in our proof transforms the annotated language RL to an im-
perative language KL. The imperative language, by design, looks quite similar



to the functional language but employs assignments. The translation of the ex-
pression let x = y[i — k] in z[i] into KL is done in the context of a result
variable return. In IL, we get a program {int z;z := y[i — k]; return := z[i]}.

Like RL, the execution of the imperative language KL tracks reference counts
and uses the marking to release references. A reference is released by decre-
menting its reference count and freeing memory when the reference count drops
to 0, but only after recursively releasing the references in the contents of the
array. In addition to the stack S, the store M, and the reference count C,
the operational semantics for KL maintains a continuation X that is just a
program representing the rest of the computation. Let the initial continua-
tion Ko be {int z;z := y[i — k|;return := z[i]}, the initial stack Sy be
(return + undef,i — 2,k — 5,y + 7), the initial store Mg be {rg — (1,2,3)},
and the initial reference count table Cy be {ro — 1}. The declaration int x
is evaluated by extending the stack with the binding = +— undef so that S is
(x — undef,return — undef,i — 2,k — 5,y — 7r¢), while appending a pop
instruction to the right of the continuation corresponding to the binding for x to
yield Ky = z := y[i — k]; return := z[i]; pop. The store and reference count ta-
bles are left unchanged in M; and C;. The assignment  := y[i — k] is executed
by evaluating the right-hand side by updating the array bound to 7 in the store,
binding z in the stack to the reference 7, and releasing the binding to y. Now, Ko
is return := z[i]; pop, S2 is (x — 7y, return — undef,i — 2,k — 5,y > nil),
My is {rg — (1,2,5)}, and C; is {ro — 1}. The assignment to return is then
executed and the remaining pop instructions are executed to yield the final state
where K4 is empty, the Sy is set to (return — 5,i — 2.k — 5,y — nil),
and My and Cy4 are both empty. The bisimulation between the evaluation of an
RL expression and the execution of its translation in KL is quite challenging
since there are subtle semantic differences between the executions of these two
languages.

The goal of our proof exercise is to construct a simple and elegant formal-
ization of the correctness of the correspondence between the evaluations of the
source and target of a code generator that is amenable to easy mechanical ver-
ification. We have defined intermediate representations that simplify the proofs
while retaining the flexibility to support multiple source languages and target
multiple imperative languages. The proofs have been designed so that the lan-
guage can be extended with new features with minimal impact on the invariants
and bisimulations. The formally defined code generator presented here is an ide-
alization of a practical code generator from a functional language to C. This code
generator produces readable, self-contained C code with a modest overhead for
reference counting.

Related Work. Reference counting was introduced by Collins [5] in 1960. It
was shown to fail in the presence of cyclic structures by McBeth [I§] in 1963.
Reference cycles cannot appear in the execution of PVS or in any of the lan-
guages FL, RL, or KL so that our use of reference counting is sound. There
are several proofs of the correctness of reference counting implementations and
reference counting garbage collectors [8I19]. Hudak [I3] presents an abstract in-
terpretation in terms reference counts as a way of optimizing program execution.



Several papers present static analyses for safe destructive updates in functional
languages [T4I7I12I26l222]. Chirimar, Gunter, and Riecke [4] define a reference
counting abstraction machine for a computational interpretation of linear logic.
The work that is closest to our own is Schulte’s code generator [2I] for the spec-
ification language Opal [6] that translates a first-order functional fragment of
the language into a reference counted implementation in C in which execution
interacts with the garbage collector to reuse storage (see also de Moura and
Ullrich [25]). The analysis and transformations used here are similar though the
intermediate languages and proof techniques are quite different. We are using a
formal model of reference counting to dynamically manage memory for a source
language with object updates that can be executed destructively when safe. The
presentation here is the basis for a practical implementation of a code genera-
tor that covers a full functional language with arrays, records, tuples, algebraic
datatypes, and closures, as well as the outline for a machine-verified proof for
its correctness.

Formal verification of compilers is a well-studied topic [2008124IT5IT7IT6]. This
paper presents the theory underlying a simple code generator. Based on our prior
experience, we estimate that the mechanization of the proofs here would require
fewer than ten person-weeks, whereas the correctness of the full PVS2C code
generator would involve a substantial months-long effort. In contrast, proving
the correctness of a compiler is a much larger undertaking.

2 A Small Functional Language

The source functional language FL features recursive functions, let-bindings and
immutable arrays, and is in A-normal form. Internally we always use de Bruijn
indices everywhere for the variables for simplicity; however, in the paper we will
use identifiers when giving examples to make the example more readable. The
syntax of FIL is defined in Figure The functions f can be primitive functions
like 4, %, and —, or defined functions. The sequence of variables x1,...,x, in a
function application f(z1,...,z,) may contain duplicates.

The variables and operations have types associated with them in order to
simplify the definition of various memory management operations. The expres-
sion vars(e) is defined as the set of free variables in e. A type ¢t is either the
integer type int or is an n-element array ¢[n] with element type ¢t. The constant
nil is seen as a valid constant for any array type of the form t[n].

t::=int | t[n]

Each function symbol has a type t; X ... X t, — t, where the i’th argument
has type t;, and the range type is t. Given the types of the variables and function
symbols, the type of a well-formed expression e can be computed as 7(e).

The type system does not rule out errors due to null dereferencing and out-
of-bounds array access. Given the types for variables and operations, each well-
typed expression has a unique type. The type rules are straightforward and
are left as an exercise for the reader. For the sake of simplicity, we will often



ex=|n redex := | x

E | Flan . z)
|nil | <]
| Fn ) | oy 2]
|let (z:t) =€y in ey | newint(n)
| ifnz x then e; else e | newref(n)
| z[y] | ifnz x then e; else ey
| z[y — 2] |letx=vine
| newint(n) | newref(n) | pop(v)
| pop(e1) | ref(k) , where v is a value.
(a) Syntax of FL (b) Definition of a redex

Fig. 1: Expression and Redex Syntax of FL

omit the type annotations on the let constructors. Note that the pop and ref
constructors are not allowed in programs and are used only during reduction.
We also restrict the primitive functions to operate solely over the integers.

We also define an evaluation context with a hole [J marking the location
where evaluation occurs, as below.

K :=0]1let (x:t) = K; in ey | pop(K7)

The composition Ke] of a context K and an expression e consists in replacing
the hole [J in K by the expression e. A wvalue is a reference, a constant or nil.
A redez is defined in Figure

Theorem 1. Every expression that is not a value can be uniquely decomposed
as the composition of a context and a redez.

The state is defined as a triplet (e, S, M), where e is an expression, S is the
stack, which maps variables to values, and M the state of the memory, which
maps a finite number of references to finite sequences of values. The empty stack
is written as empty. Entries A are pushed on to the stack by the operation
push(A,S). When S is a stack of variable bindings, a binding x +— v is pushed
on to the stack by the operation push(z — v,S). For a sequence of variables
Z1,...,%, (abbreviated as T) and values vy, ..., v, (abbreviated as 7), we abbre-
viate push(z,, = v,,...,push(z; — v1,5)...) as push(Z — 7, 5). The lookup
operation S(z) retrieves the topmost binding for z. This operation is only in-
voked when there is a binding for z in S. We also use the operation S[z +— v]
to update the topmost binding for = in the stack. This operation is also applied
only when there is a binding for z in S. We denote by new (M), a reference that

is not yet defined in M. We use f(vy,...,v,) % v for the reduction relation



S, M) = (S(x), S, M)
(z[y], S, M) = (M(S(2))(S(y)), 5, M)
]S, M

(zly = 2], 9, M) = (r, S, M[r = M(5(2))[S(y) = S(2)]]),
where 7 = new (M)
(newint(n), S, new (M), S, M[new (M (0,...,0)])
M|

M
(newref(n), S, M <n11 -,nil)])
M

(letx=wvine,lsS,

(pop(v), S

) =

) =
pop(e), push( — v, 5), M)
v, pop(S
e, S, M), if S(z)#0
(e2,S, M), otherwise
(f(z1,...,2n),S (v, S, M) for primitive f,

where f(S(z1),...,S(xn)) > v
(f(z1,...,20), S, M) — (pop"(e), push(y — S(T),5), M)
where f(y1,...,yn) =ein A.

( (
(new (M), S, M[new (M
(po

(v

(ifnz z then e; else ey, S, M) — {

Fig. 2: Operational Semantics of FIL

capturing the evaluation of primitive functions such as +. The non-primitive
functions are defined in the program A which maps the function symbol f to
its definition of the form f(y1,...,yn) = e where vars(e) = {y1,...,yn}, and
yi #y; for 1 <i<j<n.

The small-step semantics are defined as the unique context-preserving re-
lation — that is defined on redexes as in Figure [2| It is easy to see that the
reductions are deterministic. An evaluation step has the form (Ele], S, M) —
(E[e'], S", M) iff (e, S, M) — (¢/, 8", M).

It is an error to access or modify outside the bounds given by the store,
to call a non-existent function, to call a function with an incorrect number of
arguments, or to use primitive operations with unsupported arguments. The
state obtained after such erroneous reductions is L.

Let swap(u,i,j) be defined as

let a = uli] in let b = u[j] in let v’ = u[i — b] in v'[j — a].
Given e = let z = +(y,1) in swap(x,y,z) with S = (y — 0,2 — r) and
M = (r— (0,1)), we show the steps in the reduction of (e, S, M) in Figure
3 Evaluation with Reference Counting

The reference-counting language RL extends FL with an additional constructor,
release(z,e), which is also a redex. In addition, a variable occurrence in RL



let z = +(y,1) in swap(z,y, 2),
((y*—)O,xHT),(TH«),l)) ) (1)

— (let z =1 in swap(z,y, 2), (y — 0,2 — 1), (r — (0,1))) (2)
— (pop(swap(x,y,2)), (z—= 1,y — 0,2 — ), (r — (0,1))) (3)
.leta=wufiin ...,
— | G—1i—=0u—r...), (4)
(r—(0,1))
...leta=01in ...,
<(ji—>1,in—>0,ti—>r,...),(rH<071>)> (%)
— ... letb=u[j]in ...,(a—= 0, — 1,...),(r — (0,1}))) (6)
— (...letb=1in ...,(a—0,j—1,...),(r— (0,1))) (7)
Sletw/ =wufi— b in ...,
— | (b—=1,a—0,...), (8)
(r—(0,1))
letuw/ =7 in ...,
— (b|—>1,al—>0,...), 9)
(r' = (1,1),7 — (0,1))
— (. dfea. Wb 1), (= (1), 00) (10)
— (pop7(r”),(u’»—>r,bl—> 1,...), ( — (1,0),...)) (11)
(" (y = 0.2 o ), (77 = (L0),r o (L 1) (0,1)) (12)

Fig.3: An example F'L reduction

can be marked to indicate that this is the last occurence of the variable along
an evaluation path. The evaluation state is extended with C which maps each
reference to its reference count.

Define #(S,r) as the number of times the reference r occurs as a binding in
stack S, #(a,r) as the number of occurrences of r as an element of the array
a, and 1,c. as 1 if r occurs as a value in e, and 0, otherwise. The key invariant
that is maintained is that the value of C(ref(k)) is exactly the reference count
of ref(k) in e, S, and M.

C(ref(k)) = 1ref €e + # S ref + Z # ref ref(k)) (13)
ref(j)eM

The advantage of defining and maintaining this reference count is to be able
to free memory as soon as it is no longer needed, and to be able to perform more
efficient destructive updates on the arrays.

The evaluation also preserves three key invariants:



early-release. Each variable in S that is no longer live in e is not bound to a
reference.

correct-marking. The expression e is correctly marked (deleting all the mark-
ings in e and re-marking the result (using the mark algorithm shown below)
returns an expression identical to e).

release-marked. All subterms of e of the form release(x,e’) have the occur-
rence of x in the first argument marked.

We use the following helper functions:

incr(ref(k),C) = Clref (k) — C(v) + 1]

incr(v,C) =C otherwise
decr(ref(k),C) = Clref(k) — C(v) — 1]
decr(v,C) =C otherwise

The function decref takes a value, the state of memory and a count, and if
the value is a reference, decreases its count. In case the count is 1, it recursively
(using decrefx) decreases the count of all the non-nil references pointed by
that one and replaces them by nil before freeing the memory allocated to a
reference r by setting M(r) to L. The termination of the mutually recursive
definitions of decref and decrefx is given by a lexicographic measure on the
size of the type t and the array index mEI

decref(t[n])(ref(k), (M,C)) = (M,decr(ref(k),C)), if C(ref(k)) > 1
decref(t[n])(ref(k), (M,C)) = (M'[ref(k) — L], decr(ref(k),C’)),
if C(ref(k)) =1
where (M',C") = decrefx(t)(v, (M,C),n)
decref(t)(v, (M,C)) = (M, C), otherwise
decrefx(t[n])(ref(k), (M,C),m + 1) = decref (t)(M(ref (k))[m], (M",C")),
where (M',C") = decrefx(t[n])(r, (M,C), m)
M = M'[r — M'(r)[m — nil]]
r =ref(k)
decref«(t[n])(ref(k), (M,C),0) = (M,C)
decref«(t)(v, (M, C),m) = (M,C), otherwise

Expressions being evaluated are analyzed in order to mark the last occurrence
of a variable along any evaluation path. This marking helps to identify the
lifetime of the variable by indicating the point at which the variable is no longer

5 Note that due to the recursion on type structure, the termination proofs do not need
to assume that the store is non-cyclic. In our mechanization, we use a slightly dif-
ferent definition and exploit Invariant 13| and the invariant (also implicit in decref)
that M contains no (dangling) references that are not in the domain of M so that
the total reference count in M decreases with each call to decref.



used in a computation. The operation mark(X,e), a few cases of which are
defined below, marks each variable in e that is not in X. In the remaining cases,
mark(X, e) marks the last (non-binding) occurrence in e of any variable in
vars(e) — X . We overload release so that release({z1,...,%,},e) is shorthand
for release(x,,...release(xy,e)...).

mark(X,z) =
r ifzeX
x otherwise

mark(X,let z = e in eg) =
let z = mark(X U vars(ez), e1)
in mark(X, es) if z € vars(es)
let z = mark(X U vars(ez), e1)
in release(z, mark(X,e2)) otherwise
mark(X,ifnz © then e; else eg) =
ifnz mark(vars(e;) U vars(ez) U X, z)
then release(vars(ez) — (X Uvars(e1)), mark(X, e;))
else release(vars(e;) — (X Uvars(eq)), mark(X,es))

For example, mark(f), let z = f(y) in ifnz z then g(x,y) else f(z)) is

let z = f(y) in ifnz z then g(z,y) else release(y, f(z))

We translate F'L programs into marked RL programs by replacing each def-
inition of the form f(g) = e in A by f(y) = mark(d,e) in the RL program
A#,

Given a sequence z1,...,x, (abbreviated as T) of (possibly marked) vari-
ables. Let incvars(Z, S, C) represent the result of incrementing the count of S(y)
by one for each unmarked variable y in 7.

incvars((), S,C) =C

incvars((z1, 22, ...,2,),S,C) = incvars((zz, ..., 2,),5,C’), where

o — incr(S(z),C), if x is unmarked
1 C, otherwise .

Figure [f] shows a few cases of the definition of reduction for RL redexes.

The reduction of update redexes is by far the most complicated of all; but it
is also the main reason why we perform this step of reference counting.

For instance, let swap(u,i,7) be defined as

let a = u[i] in let b= u[j] in let v/ = u[i > ] in i[l — al.

10



(x,8,(M,C)) =% (S(z), S[x + nil],(M,C))
if x is marked and S(z) is a reference
(z,8,(M,C)) =% (S(z), S, (M, incvars(z, M,C))) otherwise
(f(@), S, (M,C)) =¥ (e,Sn, (M,C")), where
C' = incvars(z, S,C)
So = push(y — S(Z), S)

Si[a:i — nil],
Sit1 =1 if z; is a marked and S(x) is a reference
S;, otherwise
(z[y = 2], 8, (M, C)) =% (S(z), S [r + nil], (M",C")),
if C(S(x)) =1 and = is marked
where 7(z) = t[n], for some n,
M= M[S(z) = M(S(x))[S(y) = S(2)]],
C' = incvars(z, S,C)
(M",C") = decref (t)(M(S(2))[S(y)], (M, C"))
(l'[y — Z]a Sa (M7C)) _># (T7 SN, (M/, CIH)), Otherwise
where r = new (M),

M = M[r = M(S())[S(y) = S(2)]],

if z is marked
(C,S), otherwise,

{ (decr(S(x),C’, S[x — nil)))
(C//,S//) —

{ (decr(S(z),C),S[z — nil))
(Clv‘sl) =

if z is marked
C’,S"), otherwise

C" = (F#HM'(r)) +C")[r — 1],
(release(z,e), S, (M,C)) =% (e, S[x — nil], decref(7(z))(S(x), (M,C)))
if S(z) is a reference

(release(z,e), S, (M,C)) =% (e, S, (M,C)),otherwise

Fig. 4: Operational Semantics of some reductions in RL

Suppose that e = let z = +(y,1) in swap(z,y, z), with S = (y — 0,2 > r),
M = (r+—{0,1)) and C = (r — 2). Steps of the reduction are detailed in Figure

11



letw =7 in ...,
—# | (b 1,a—0,...,u+>nil,...),
— (0, 1), (r" = 1,r—1)

o djd.. (Wer b1, 0= (1,1),..))

l

<1et z=+(y,1) in swap(z, y,2), (y — 0,z — r),)

(r—(0,1)), (r — 2)
let z =1 in swap(z,y,2), (y = 0,2+ 1),

= (s o )
pop(swap(z, ¥y, 2)), (z = 1,y = 0,z 1),

_>#<< = (0,1)), (r > 2) )

( let a=ufi] in ...,

—# (jr—>1,il—>0ur—>7‘,...,x+—>nil),
(r—10,1)), (r—2)
leta=0in ...,(j = 1Li—0u—r...),

—7 (( — (0,1)), (r = 2) ! )
dletb=ulj]in ...,(a—0,7—1,...),

—* (¢ S )
letb=1in ...,(a—0,j—1,...),

—* (¢ S )
dletw' =wfi—bdlin ..., (b—1,a—0,...),

= (o )
(

(r'—=(1,1),r
op”(r'), (W +— nil,b—1,...),
— (I()T'pl—><1,0>,...),(r'»—>1,...) >
o F <r’,/(y'—>0,;v»—>nil), )

= (1,0), 7 — (0,1)),(r — 1,7 — 1)

Fig.5: An example reduction in RL

(10)

(11)

(12)

Notice how even though the reference count of r was 2 initially, we still saved
a copy compared to Figure[3|and performed a destructive update instead. Indeed,
the reference count of the result of an array update is always 1: either it is the
result of a destructive update, in which case the reference count has to be 1, or

it is a fresh copy, in which case the count is 1 as well.

Theorem 2. With the reductions in Figure[], it is an invariant that the count
18 accurate, that is, equation holds, and the other invariants (early-release,

correct-marking, and release-marked), are preserved as well.

To establish a bisimulation between the RL state (e/,S’,(M’,C’")) and the
FL one (e, S, M), we say these two states match if there exists a translation
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function p from the elements of the domain of M’ with a count greater than
zero to those of the domain of M such that:

— The expression e is the result of translating the references (applying p to
each of the references) when unmarking all the variables and removing all
release constructors in €/,

— For each variable z in vars(e’), S(x) = p(S'(x)),

— For each reference r in the domain of M’ with a count greater than zero,
M(p(r)) is the result of translating the references of M'(r).

The mapping p is not fixed across the two executions but depends on the
pairs of states being matched. For example, the bisimulation between the FL
execution in Figure[3|and the RL execution in Figure [5|lines up the twelve states
in each execution exactly. The mapping {r — r} is used for matching states 1
through 8, and {r — r,7’ — ¢’} for states 9 and 10, and {r — r,7' — "} for
states 11 and 12. Note that although it is not required for the mapping between
references to be injective, it happens to be an invariant (that is not needed for
proving the bisimulation result). We also do not need to assume that the store
does not contain any cycles, though this too is an invariant that is preserved by
both FL and RL executions.

Theorem 3. If the state S = (e, S, M) matches the state ' = (¢/, 8", (M', (")),
we have:

— if the current redex of ¢’ is a release redex, then the state obtained when
reducing S’ after one step still matches the state S,

— if it is not a release redex, then the state obtained when reducing S and the
one obtained when reducing S’ for a step each still match each other.

Theorem 4. The reduction relations — in FL and —# in RL are in bisim-
ulation.

As a step toward an imperative translation of RL, we extend RL by adding
a construct of the form return(e) to mark the return from a function call. Since
the return label will be used as a variable in the imperative translation, it cannot
be used as a variable identifier in RL. In the expanded language, return(0) is
an evaluation context. We also have a redex of the form

(return(v), S, (M, C)) —# (v, S, (M,C)).
The evaluation rule for function calls is modified as below.

(f(7),8,(M,C)) =7 (return(pop”(e)), Sn, (M, ")), where
C’ = incvars(z, S,C)
So = push(y — 5(z), 5)
Si[x; — nil],
Sit1 =1 if ; is a marked and S(x) is a reference
S;, otherwise

13



We also label the pop operations with the variable being popped so that
it has the form pop, when the stack entry to be popped binds z. Neither of
these extensions affects any of the claims about RL since the return operation
essentially functions as a skip operation, and labeling the occurrences of pop has
no impact on the evaluation. Both these constructs together with let-binding are
used to define the stack employed in the imperative evaluation in terms of the
RL stack.

The operation stack(z)(E) on an evaluation context E collects the stack of
variables introduced by return, pop, and pending let-bindings on the path to
the hole in the RL expression being evaluated. This operation fuses consecutive
return variables so that the return value from the evaluation of a function is
passed directly to the outermost return point. The stack used in the imperative
evaluation binds variables in a somewhat different order than the operational
semantics for RL. The stack operation is used to capture the sequence of vari-
ables that appear at the top of the stack during the evaluation of the imperative
counterpart of an RL expression. It is used in defining the bisimulation between
RL executions and the imperative semantics presented in the next section.

stack(z)(O, st)
stack(z)(let y = a in b, st)

st
stack(y)(a, push(y, st))
(a, push(y, st))

)

)

(z)(a, st), if © = return

(return)(a), push(return, st)), otherwise

stack(z)(pop,(a), st) = stack(z

stac

stack(z)(return(a), st) = { stacll:

4 A Small Imperative Language

Mapping RL expressions to imperative code poses significant semantic chal-
lenges. In RL, we evaluate expressions, whereas in an imperative language, the
statements are executed sequentially. RL evaluation returns a value, whereas the
execution in an imperative language returns a state mapping variables to val-
ues. This changes the signalling mechanism used to identify the redexes. In FL
and RL, a let-redex is triggered when the binding expression becomes a value.
There is no such signalling mechanism in an imperative program since state-
ments are executed successively. There is no handy equivalent of let-expressions
let x = a in b in imperative languages since this expression is mapped to two
statement blocks: s, for computing a¢ and assigning the value to z, and s; for
evaluating b. Since x is assigned in s, and used in s, it has to be declared
ahead of the block s,, but this has the unfortunate side-effect of including s, in
its scope. Such issues of scope can be handled in a formalization based on the
de Bruijn representation (as we do in our mechanized proofs), but require some
care when using a named representation.

The target of our code generation is an imperative language KL which looks
quite similar to RL. From KL, we can target a lower-level imperative language
such as C that does not keep track of reference counts automatically. A program
KL is defined as a sequence of functions, whose body is a statement, with the
definitions in Figure [f]
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ex=|n

su=|xz:=e
| z
il | ifnz x then s; else so
ni
| skip
| f(z1,. e 2n)
) e
| {t z;s}
| z[y = 2]
| release z
| newint(n) |
o
| newref(n) pop
decl ==t z
function ::= (name, decl”, s)
program ::= function™

Fig. 6: Syntax of KL

As in KL, variables can be marked. A value is now either nil, an integer,
a reference, or undef. It is an error to use the value undef within a program
since it is there only for evaluation purposes. There is a special variable named
return that is used as the return value of a function and is never used as a
regular variable in a program.

Once a program with definitions IT is fixed, the evaluation state for KL is a
triplet (K, .S, (M,C)), where as previously, S is the stack, which maps variables
to values, M and C are the store and the reference counts, respectively. K is the
(possibly empty) statement (or continuation) being evaluated. The evaluation
rules for KL are given in Figure@ (for non-assignment statements), Figure (for
non-array assignment statements), and Figure (for assignment statements).

Next, we illustrate the translation of RL expressions into KL code. To trans-
late a function with body e from RL to KL, we use translate(e, return), where
translate is defined in Figure[7] The operation assumes that in any RL subex-
pression of the form let x = a in b, the variable x does not occur free in a.

To translate the RL program A# into a KL program II, we translate each
function definition f(Z) = e in A# as f(x1,...,24) = sy, where

s; = translate(pop?(e), return).
For the example of the swap(u,i,7) program, the body
let a = ufi] in let b = u[j] in let v/ = ufi + b] in i[l — al
is translated as

/

{int a;a := u[i]; {int b; b := u[j]; {int[2] v’;u := u[i — b];return := i[l —alt}}
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translate(n,z) =2 :=n
translate(y,z) =z :=y
translate(nil, z) = 2 :=nil
translate(f(z1,...,2,),2) =2 := f(z1,...,2Z5)
translate(let (y:t) = ey in e, x) = {t y; translate(ey, y); translate(eq, x)}
translate(ifnz y then e; else eg,2) = ifnz y then $; else so,

s1 = translate(eq, z),

so = translate(es, x)

= release y,translate(e x)
= translate(e, z); pop,

translate(e, ), if © = return
{t return; s.;x := return}, otherwise,

translate(return(e),z) = where
s. = translate(e, return),
t=17(e)

Fig. 7: Translation from RL to KL

Next, we demonstrate a bisimulation between the evaluation of an RL ex-
pression and the execution of its translated program.

We define lvars(S) to represent the stack of variables bound in the stack.

lvars(push(z — v,5)) = push(z, lvars(S))
lvars(push(z — undef, S)) = lvars(S5)
lvars(empty) = empty

The operation defined(S) extracts the defined bindings in the stack S:

defined(push(z — v, S)) = push(z — v, lvars(5))
defined(push(return — v, 5)) = defined(S)
defined(push(z — undef, S)) = defined(S)
) =

defined(empty) = empty
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{int z;2 := +(y, 1); return := swap(z, y, 2) }; K,

(return — undef,y — 0,2 — 1), (1)
((r=10,1)),(r2))

z := +(y,1); return := swap(z, y, z); pop; K,

—" | (2 — undef;return — undef,y — 0,z +— 1), (2)
((r=10,1)),(r—2))

return := swap(z, y, z); pop; K,

—" | (2= 1,return — undef,y — 0,z — ), (3)

((r—=(0,1)),(r—2))

8 swap; POP;” pop; K,
—' | (—1,i— 0,u+ r,z — 1,return — undef,y — 0,2 — nil), | (4)

((r = (0,1)),(r > 2))

a = ulil;...;pop;® K,
—' | (a > undef,j > 1,i > 0,u + 7, z > 1,return + undef,...), | (5)
((r=(0,1)), (r = 2))
[ b= uljl;. .. ;pop;8 K,
=5 [ (b undef,a 0,5 1,...), (6)
((r=(0,1)), (r = 2))
W =i bl pop T K,
—~5 | (v~ undef,b—1,a—0,7—1,...), (7)
((r=(0,1)), (r = 2))
, [ return:=u[j — a];...; K,
| (W= b 1a— 0,u—nil, .. ), (8)
((r" = (1,1),r— (0,1)),(r" = 1,r 1))
= (K, (return — 17, ..), (7' = (1,0),...), (1" = 1,7 1)) (9)

Fig.8: An example reduction in KL

For KL program s, let body(s) be defined as below.

body({t z;s}) = body(s); pop
body(s1;s2) = body(s1); s2

A rough point of correspondence between an RL state (e, S1, (M,C)) and KL
state (se, S2, (Ma,C2)) is

1. The KL program s. corresponding to e is the empty program when e is a
value, and is body(translate(e, return)), otherwise.

2. The correspondence between the RL stack S; and KL stack S is that
lvars(S;) = stack(return)(e, push(return, empty)) o lvars(S) for some S,
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(skip; K, S, (M, C)) —' (K, S, (M,C))

51  ( 5:pop; K, push(z — undef, 5)
({t @35} K, 5, (M, C)) — ((MVC)

(ifnz x then s; else s9;K, 9, (M,C)) —' (5:;K,5,(M,C)), where
i:{Q, if S(xz) =0

1, otherwise
(release x; K, S, (M,C)) —' (K, S[x + nil], (M’,C")), where
(M’,C") = decref(S(z), (M,C))
(pop; K, 8, (M, C)) —' (K, pop(¥), (M, C))

Fig.9: Operational Semantics of KL: Non-assignment statements

and defined(S;) = push(return — v, 51), when e is the value v, and oth-
erwise S7 = defined(Ss).
3. (My1,C1) = (M3,Ca).

The idea is that we initiate both evaluations with a stack Sy but the KL state
stack is of the form push(return — undef,Sy) to capture the return value.
Furthermore, the Sy stack contains bindings, defined and undefined, for the
variables in stack(return)(e), whereas all the bindings in S are defined.

However, the first bullet holds only for canonical states, as defined below. For
example, in RL, e can have the form let z = r in €’ for some reference r but the
syntax of KL does not allow explicit references in expressions. The fourth state in
Figure [8| has a program of the form {int a;a := u[i];...}, which is not the body
of the program. To get around these discrepancies, we restrict the correspondence
to states in canonical form obtained by applying certain reductions. In RL, in
any state (e, S1, (Mi,Cz)), redexes €’ of the form let z = v in €, return(v),
and pop(v), where e = E[e’], must be silently reduced. Similarly, in any KL state
(s; S2,(Ma3,Cs)) any of the following redexes must be silently reduced:

1. {t x;s} K

2. z:=uv; K

3. x :=return; K
4. pop; K

With these reductions, the above correspondence yields a bisimulation be-
tween RL and KL execution steps. For example, in the derivation in Figure [§]
(assuming that continuation K is empty) the canonical states are 2, 3, 5, 6, 7,
8, and 9, which correspond to the RL evaluation states 1, 3, 4, 6, 8, 10, and
12 in Figure |5 The correspondence between the canonical RL expressions in
evaluation in Figure [5| and their translations in the KL evaluation in Figure [§|is
shown in Figure [12]
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, (M, €)) —' (K, Sz = S(y)], (M, C))
, (M, €)) —* (K, S[z = S(y)], (M, L),

where y is unmarked,

C' = incr(S(y),C)

(x:=m;K,S,(M,C)) —' (K, S[z — n],(M,C))

(y::f(xla"'7

xn);K7 S, (Mvc/))

—' (K, Sp, (M, ")), where

sg;pop™; K, if y = return

K’ = { sy;pop;” y := return; pop; K,
otherwise
push(y — S(7),
g _ push(return — undef, 5)),

if y # return
push(y — S(7),5), otherwise
So=29"
Sl[.’L‘l — nil], if
x; is a marked and
S(x) is a reference
S;, otherwise

C' = incvars(z, S,C)

Siy1 =

Fig. 10: Operational Semantics of KL: Non-Array Assignment Statements

let z = +(y,1) in swap(z,y, 2)

z = +(y, 1); return := swap(z, Y, 2); POP;

swap(z,y, z)

return := swap(z, Y, 2); POp;

return(let a = u[i] in ...) a:=uli];...;pop;’
return(let b =ulj] in ...) b:=ufj];...;pop;°
return(let u’' = uf[i — b} in ...) u = ufi — b];...;pop;"

return(i[i — al)

return := u'[j — al;...

; Pop;”

!/
T

Fig. 12: Correspondence between RL and KL Evaluation

Theorem 5. The reduction relations —# in RL and —' in KL are in bisim-

ulation.

5 Conclusions

Functional languages offer significant advantages in terms of expressiveness and
verifiability, but they require fairly extensive runtime support. Our goal here
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(= y[z]; K, S, (M, C)) —' (K, S[x — v],(M,C")), where
v=M(S(y))[S(z)],C" = incr(v,C)
(z = ylz = w); K, S, (M, C)) —' (K, S[z +— 0], (M"”,C")), where
v =S(y),C(v) = 1,v is a reference,
M = M()[S(z2) == S(w)],
C' = incvars(w, S,C),
(M",C") = decref (t)(M(v)[S(2)], (M, C"))
(z:=y[z — w]; K, S, (M, C)) —' (K, S[z +— v], (M',C")), where
v = S(y),v is a reference,
y is unmarked or C(v) > 1,
r = new (M),
M = Mlr = M(S(y))[S(z) = S(w)],
¢ = (FM(r) +C)lr 1],
C" = decr(M(v)(5(z)),C")

Fig. 11: Operational Semantics of KL: Assignment statements

is to generate efficient, standalone code from an executable fragment of a logic
in which we can unify specification, modeling, and execution. The PVS2C code
generator translates an applicative fragment of PVS into C code. The generated
C code is self-contained and does not rely on a run time. The generated code
preserves the type safety of the typechecked PVS. It can only crash by exhaust-
ing resource bounds. The generated C code is comparable in efficiency to the
corresponding hand-crafted C, and is typically a lot faster than the Common
Lisp code generated from PVS.

The intermediate languages presented here: FL, RL, and KL form the core
of the translation from the applicative subset of PVS to executable C code. The
translations between these languages and the bisimulation proofs presented here
form a step toward the mechanized verification of the code generator. We believe
that the proof outlined in the paper can be easily mechanized, and can also be
used as a foundation for similar proofs involving more sophisticated language
features.
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