There is a newer version of this record available.

Dataset Open Access

ACMUS-MIR: An annotated data set of Andean Colombian music

Fernando Mora-Ángel; Gustavo A. López Gil; Estefanía Cano; Sascha Grollmisch


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3965447</identifier>
  <creators>
    <creator>
      <creatorName>Fernando Mora-Ángel</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3437-1590</nameIdentifier>
      <affiliation>Universidad de Antioquia</affiliation>
    </creator>
    <creator>
      <creatorName>Gustavo A. López Gil</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3459-353X</nameIdentifier>
      <affiliation>Universidad de Antioquia</affiliation>
    </creator>
    <creator>
      <creatorName>Estefanía Cano</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1056-5844</nameIdentifier>
      <affiliation>Fraunhofer IDMT</affiliation>
    </creator>
    <creator>
      <creatorName>Sascha Grollmisch</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9703-110X</nameIdentifier>
      <affiliation>TU Ilmenau, Fraunhofer IDMT</affiliation>
    </creator>
  </creators>
  <titles>
    <title>ACMUS-MIR: An annotated data set of Andean Colombian music</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Digital music archives, Andean Colombian music, music information retrieval, computational ethnomusicology</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-07-29</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3965447</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3268960</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The ACMUS-MIR data set is a selection of music taken from the M&amp;uacute;sicas Regionales Archive in Medellin, Colombia. The data set currently contains a total of 337 segments of annotated music. The data set was compiled to support the development of computational methods for three main tasks: 1) Recognition of simple and compound meters, 2) Instrumental format recognition, and 3) Scale detection. For this reason, the ACMUS-MIR data set currently comprises three independent sets (one for each task): the rhythm set, the instrumental format set, and the scale set.&lt;/p&gt;

&lt;p&gt;For more information about our project, please visit our&amp;nbsp;&amp;nbsp;&lt;a href="https://acmus-mir.github.io/"&gt;website&lt;/a&gt; and &lt;a href="https://github.com/ACMUS-MIR"&gt;github&lt;/a&gt;.&lt;/p&gt;

&lt;p&gt;For additional datasets from the ACMUS project, see:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;&lt;a href="https://zenodo.org/record/3829091#.Xxd3IZ7TuUk"&gt;Sesquialtera in the Colombian bambuco: Perception and estimation of beat and meter&lt;/a&gt;&lt;/li&gt;
&lt;/ul&gt;</description>
    <description descriptionType="Other">This work has been partially supported by the German Research Foundation (BR 1333/20-1, CA 2096/1-1).</description>
  </descriptions>
</resource>
702
345
views
downloads
All versions This version
Views 702223
Downloads 345155
Data volume 284.7 GB173.7 GB
Unique views 467160
Unique downloads 13975

Share

Cite as