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Abstract

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1

2 . Many consider it
to be the most important unsolved problem in pure mathematics. It is one of the seven Millen-
nium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize
for the first correct solution. If the Robin’s inequality is true for every natural number n > 5040,
then the Riemann hypothesis is true. We demonstrate the Robin’s inequality is likely to be true
for every natural number n > 5040 which is not divisible by 2, 3 or 5 under a computational
evidence. In this way, if there is a counterexample for the Robin’s inequality, then this should be
for some natural number n > 5040 which is divisible by 2, 3 or 5.
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1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 . Many consider
it to be the most important unsolved problem in pure mathematics [1]. It is of great interest in
number theory because it implies results about the distribution of prime numbers [1]. It was
proposed by Bernhard Riemann (1859), after whom it is named [1]. In 1915, Ramanujan proved
that under the assumption of the Riemann hypothesis, the inequality:∑

k|n

k < eγ × n × log log n

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler’s constant and k | n means
that the natural number k divides n [2]. The largest known value that violates the inequality is
n = 5040. In 1984, Guy Robin proved that the inequality is true for all n > 5040 if and only if
the Riemann hypothesis is true [2]. Using this inequality, we show a new step forward in proving
that the Riemann hypothesis could be true.
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2. Results

Euler’s totient (phi) function is the number of integers less than n and co-prime to it, denoted
by φ(n) [3]. In general, if n is written as the product of prime factors: n = pa × qb × rc . . ., then
the number of co-primes to n is φ(n) = (p − 1) × pa−1 × (q − 1) × qb−1 × (r − 1) × rc−1 . . . [3].

Definition 2.1. We define another function ϕ such that if n is written as the product of prime
factors: n = pa × qb × rc . . ., then the value of ϕ(n) is ϕ(n) =

p
(p−1) ×

q
(q−1) ×

r
(r−1) . . ..

Theorem 2.2. For every natural number n, we obtain that n = ϕ(n) × φ(n).

Proof. This is true as a consequence of the definitions of these functions.

Theorem 2.3. For every natural number n ≥ 2, the inequality∑
k|n

k ≤ ϕ(n) × n

is true.

Proof. We know that ∑
k|n

φ(k) = n

is true [3]. If we multiply both sides of this equation by ϕ(n), then we obtain that∑
k|n

ϕ(n) × φ(k) = ϕ(n) × n.

In addition, we know that ∑
k|n

k =
∑
k|n

ϕ(k) × φ(k)

as result of Theorem 2.2. However, we know that∑
k|n

ϕ(k) × φ(k) ≤
∑
k|n

ϕ(n) × φ(k)

since we have that ϕ(k) × φ(k) ≤ ϕ(n) × φ(k) for every divisor k of n ≥ 2. Using the transitivity,
we finally have that ∑

k|n

k ≤ ϕ(n) × n.

Definition 2.4. A number will be a simple primorial if it is prime or it is the product of prime
numbers.

Theorem 2.5. A computational verification shows that for every simple primorial number n ≥ 7,
the inequality

ϕ(n) < eγ × log log n

is likely to be true. Moreover, the value of the subtraction s(n)

s(n) = eγ × log log n − ϕ(n)

seems to be strictly increasing.
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Proof. We have checked that the value of s(n) is always greater than 0 for the first simple primo-
rial numbers n ≥ 7. Certainly, a computational verification shows that the value of s(n) is strictly
increasing that is, for two values n′ and n′′ the computational behavior is s(n′) > s(n′′) when n′

is the next simple primorial after n′′. In this way, we obtain that the inequality

ϕ(n) < eγ × log log n

should be true for every simple primorial number n ≥ 7.

Theorem 2.6. The Robin’s inequality is likely to be true for every natural number n > 5040
which is not divisible by 2, 3 or 5 under a computational evidence.

Proof. This is a direct consequence of Theorems 2.3 and 2.5. From the Theorem 2.3, we have
that if we prove

ϕ(n) × n < eγ × n × log log n

for all n > 5040, then we could prove the Robin’s inequality since we have that∑
k|n

k ≤ ϕ(n) × n.

If we divide by n, then we would have that we only need to prove

ϕ(n) < eγ × log log n.

By a computational evidence, we know that this should be true for every simple primorial number
n ≥ 7 due to Theorem 2.5. Note that, ϕ(n) is the same as ϕ(m) when n and m have the same
prime factors. Therefore, if we prove the inequality for every n that is a simple primorial, then
we are proving the same for every other number m with the same prime factors, because of
log log n < log log m. To sum up, we prove the Riemann hypothesis could be true as well.

3. Conclusions

The practical uses of the Riemann hypothesis include many propositions known true under
the Riemann hypothesis, and some that can be shown equivalent to the Riemann hypothesis [1].
Certainly, the Riemann hypothesis is close related to various mathematical topics such as the
distribution of prime numbers, the growth of arithmetic functions, the Lindelöf hypothesis, the
large prime gap conjecture, etc [1]. This paper shows if there is a counterexample for the Robin’s
inequality, then this should be for some natural number n > 5040 which is divisible by 2, 3 or 5.
We know if the Robin’s inequality is false for some natural number n > 5040, then the Riemann
hypothesis could be false. In this way, we provide a proof that could help in that direction.
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