There is a newer version of this record available.

Conference paper Closed Access

Adoption and Effects of Software Engineering Best Practices in Machine Learning - Supplementary Material

Alex Serban; Koen van der Blom; Holger Hoos; Joost Visser


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3956019">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3956019</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3956019"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Alex Serban</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Radboud University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Koen van der Blom</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Leiden University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Holger Hoos</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Leiden University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Joost Visser</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Leiden University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Adoption and Effects of Software Engineering Best Practices in Machine Learning - Supplementary Material</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-07-15</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3956019"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3956019</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3946453"/>
    <owl:versionInfo>0.0.7</owl:versionInfo>
    <dct:description>&lt;p&gt;The increasing reliance on applications with machine learning (ML) components calls for mature engineering techniques that ensure these are built in a robust and future-proof manner.&amp;nbsp;We aim to empirically determine the state of the art in how teams develop, deploy and maintain software with ML&amp;nbsp;components.&amp;nbsp;We mined both academic and grey literature and identified 29 engineering best practices for ML&amp;nbsp;applications.&amp;nbsp;We conducted a survey among 313&amp;nbsp;practitioners to determine the degree of adoption for these practices and to validate their perceived effects.&amp;nbsp;Using the survey responses, we quantified practice adoption, differentiated along demographic characteristics, such as geography or team size.&amp;nbsp;Our findings indicate, for example, that larger teams tend to adopt more practices, and that traditional software engineering practices tend to have lower adoption than ML&amp;nbsp;specific practices.&amp;nbsp;Also, the statistical models can accurately predict perceived effects such as agility, software quality and traceability, from the degree of adoption for specific sets of practices.&amp;nbsp;Combining practice adoption rates with practice importance, as revealed by statistical models, we identify practices that are important but have low adoption and practices that are widely adopted but are less important for the effects we studied.&amp;nbsp;Overall, our survey and response analysis provide a quantitative basis for assessment and step-wise improvement of practice adoption by ML&amp;nbsp;teams.&lt;/p&gt; &lt;p&gt;&amp;nbsp;&lt;/p&gt; &lt;p&gt;The supplementary material consist of the questionnaire (Questionnaire.pdf), the data (csvs/exports-clean.csv) and the code used to process it. The Readme.md file contains all the information&amp;nbsp;for&amp;nbsp;running the scripts.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/NON_PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/closedAccess">
        <rdfs:label>Closed Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
  </rdf:Description>
</rdf:RDF>
231
24
views
downloads
All versions This version
Views 23120
Downloads 240
Data volume 10.5 MB0 Bytes
Unique views 15512
Unique downloads 240

Share

Cite as