Reprinted from the American Mathematical Monthly Vol. 88, No. 3, March 1981

A PROOF OF THE ARITHMETIC MEAN-GEOMETRIC MEAN INEQUALITY

ADOLF CUSMARIU
School of Mathematics, University of Minnesota, Minneapolis, MN 55455

The classical theorem of the means states that for every sequence of m positive numbers $\{x_i\}$

$$A_{m} = \frac{1}{m} \sum_{i=1}^{m} x_{i} \ge \prod_{i=1}^{m} x_{i}^{1/m} = G_{m}$$
 (AG)

with equality just in case the sequence is constant.

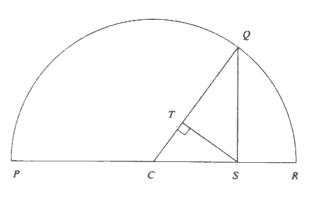


Fig. 1

Many proofs of this fundamental inequality have been discovered in modern times ([1], [2], [3]), but in its simplest setting—for only two numbers—the ancients possessed a singularly neat picture (see Pappus [4, Book 3, p. 51]), which makes matters readily apparent (see Fig. 1). Here, \overline{CQ} is the arithmetic mean of the two numbers (segments) \overline{SP} and \overline{SR} , \overline{SQ} their geometric mean, and, in addition, \overline{QT} is their harmonic mean.

Is there an analogous picture for three numbers?

During an unsuccessful attempt to obtain one, the following iterative procedure suggested itself:

$$x_1 + x_2 + x_3 = \frac{1}{2}(x_1 + x_2) + \frac{1}{2}(x_2 + x_3) + \frac{1}{2}(x_1 + x_3) \ge (x_1 x_2)^{1/2}$$

$$+ (x_2 x_3)^{1/2} + (x_1 x_3)^{1/2} \ge (x_1 x_2^2 x_3)^{1/4} + (x_1 x_2 x_3^2)^{1/4} + (x_1^2 x_2 x_3)^{1/4} \ge \cdots$$

That is, write the first sum cyclically as a sum of averages, apply (AG) for two numbers, and then repeat. After several iterations (and some inspired guessing) the pattern of the resulting monotone sequence became clear: the exponents in the kth term are the entries of the kth power of a certain matrix, namely,

$$V = \frac{1}{2}(I+S) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

Here I is the 3×3 identity matrix and S the (shift) permutation matrix $S=(\delta_{i+1,j})$. Since V is doubly stochastic, the fundamental theorem for transition matrices (see, for example, [5, Theorem 4.1.4]) implies that $\lim_{n\to\infty} V^n = \frac{1}{3}J$, where J is the matrix of all 1's, so that if we let

$$f_n = f(X, V^n) = \frac{1}{3} \sum_{i=1}^{3} \prod_{j=1}^{3} x_j^{(V^n)_{ij}}$$

then $f_0 = A_3$ (as usual $V^0 = I$), $\lim_{n \to \infty} f_n = G_3$, and (AG) for three numbers obtains as soon as we can show formally that f_n is nonincreasing. Now, the action of the (left) shift S on any matrix is just a cyclic permutation of the rows; so $f(X, V^n) = f(X, SV^n)$. Averaging, then, amounts to nothing more than writing f_n as

$$f_n = \frac{1}{2}(f(X, V^n) + f(X, SV^n));$$

that is,

$$f_n = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{2} \left(\prod_{j=1}^{3} x_j^{(V^n)_{ij}} + \prod_{j=1}^{3} x_j^{(SV^n)_{ij}} \right).$$

Consequently,

$$f_n \ge \frac{1}{3} \sum_{i=1}^{3} \prod_{j=1}^{3} X_j^{(i+S)V^n}_{ij} = f(X, V^{n+1}) = f_{n+1}$$

by an application of (AG) for two numbers and the recurrence

$$\frac{1}{2}(I+S)V^n = VV^n = V^{n+1}.$$

As for the matter of equality, if $A_3 = f_0 = \lim_{n \to \infty} f_n = G_3$, then $f_0 = f_1$ because f_n is monotone: so

$$\frac{1}{2}(x_1 + x_2) + \frac{1}{2}(x_2 + x_3) + \frac{1}{2}(x_1 + x_3) = (x_1 x_2)^{1/2} + (x_2 x_3)^{1/2} + (x_1 x_3)^{1/2},$$

i.e.,
$$x_1 = x_2 = x_3$$
.

To obtain a proof of the (AG) inequality for m numbers, all that need be done is to take the matrix V to be of size m, thereby replacing 3 by m everywhere, and the above argument goes through entirely unchanged.

It is interesting to note that the convergence (V is now $m \times m$) $\lim_{n \to \infty} V^n = (1/m)J$ may also be derived directly from the binomial theorem. Indeed,

$$V^{n} = 2^{-n}(I+S)^{n} = 2^{-n}\sum_{q=0}^{n} {n \choose q} S^{q};$$

but, since $S^m = I$, the change of variables q = tm + p, where $0 \le p \le m - 1$ and $0 \le t \le [(n-p)/m]$, shows that $S^q = S^p$. Therefore,

$$V^{n} = \sum_{p=0}^{m-1} \left[2^{-n} \sum_{t=0}^{\left[\frac{n-p}{m}\right]} {n \choose tm+p} \right] S^{p};$$

so we will have the desired limit once it is clear that

$$\lim_{n \to \infty} 2^{-n} \sum_{t=0}^{\left[\frac{n-p}{m}\right]} {n \choose tm+p} = \frac{1}{m}.$$

For this we again borrow from the past—a combinatorial identity dating back to 1834 ([6]; see also [7, pp. 19-20] and [8, pp. 40-41]):

$$2^{-n} \sum_{t=0}^{\left[\frac{n-p}{m}\right]} {n \choose tm+p} = \frac{1}{m} \left(1 + \sum_{k=1}^{m-1} \left(\cos\frac{k}{m}\pi\right)^n \cos\frac{k}{m}\pi(n-2p)\right)$$

in which we have only to pass to the limit.

Finally, there is no reason our iterative procedure ought not work in reverse, and it does. We have

$$x_1 x_2 x_3 = (x_1 x_2)^{1/2} (x_2 x_3)^{1/2} (x_1 x_3)^{1/2} \le \frac{1}{2} (x_1 + x_2) \frac{1}{2} (x_2 + x_3) \frac{1}{2} (x_1 + x_3)$$

$$\le \frac{1}{4} (x_1 + 2x_2 + x_3) \frac{1}{4} (x_1 + x_2 + 2x_3) \frac{1}{4} (2x_1 + x_2 + x_3) \le \dots \uparrow (\frac{1}{3} (x_1 + x_2 + x_3))^3.$$

More generally, if we let

$$g_n = g(X, V^n) = \left(\prod_{i=1}^m \sum_{j=1}^m (V^n)_{ij} x_j\right)^{1/m} = \prod_{i=1}^m (V^n X)_i^{1/m},$$

then, this time, $g_0 = G_m$, $\lim_{n\to\infty} g_n = A_m$, and, for the proper monotonicity,

$$g_n = (g(X, V^n)g(X, SV^n))^{1/2} \le g(X, \frac{1}{2}(I+S)V^n) = g_{n+1}.$$

Furthermore, running the iterative procedure from either mean, with the appropriate averaging, yields induction schemes as well, both forward and backward, and, with a bit of care, proofs of the inequality with arbitrary weights may be gotten along similar lines.

Acknowledgment. I would like to thank Professor Max Jodeit for his interest and for some useful suggestions.

References

- 1. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed., Cambridge University Press, London, 1964.
- 2. E. F. Beckenbach and R. Bellman, Inequalities, 3rd ed., Ergebnisse der Mathematik, Band 30, Springer-Verlag, Berlin and New York, 1971.
- 3. D. S. Mitrinović, Analytic Inequalities, Die Grundlehren der Math. Wissenschaften, Band 165, Springer-Verlag, Berlin and New York, 1970.
- Pappus of Alexandria, La Collection Mathématique, French translation by Paul Ver Ecke, vol. 1; Desclée de Brouwer et Cie, Paris, 1933.
 - 5. J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand Reinhold, New York, 1960.
- C. Ramus, Solution générale d'un problème d'analyse combinatoire, J. Reine Angew. Math., 11 (1834) 353-355.
 - 7. E. Netto, Lehrbuch der Combinatorik, 2nd ed., 1927; reprinted by Chelsea, New York.
 - 8. J. Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.