Conference paper Open Access

Portable exploitation of parallel and heterogeneous HPC architectures in neural simulation using SkePU

Panagiotou, Sotirios; Ernstsson, August; Ahlqvist, Johan; Papadopoulos, Lazaros; Kessler, Christoph; Soudris, Dimitrios


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3943728</identifier>
  <creators>
    <creator>
      <creatorName>Panagiotou, Sotirios</creatorName>
      <givenName>Sotirios</givenName>
      <familyName>Panagiotou</familyName>
      <affiliation>National Technical University of Athens, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Ernstsson, August</creatorName>
      <givenName>August</givenName>
      <familyName>Ernstsson</familyName>
      <affiliation>Linköping University, Sweden</affiliation>
    </creator>
    <creator>
      <creatorName>Ahlqvist, Johan</creatorName>
      <givenName>Johan</givenName>
      <familyName>Ahlqvist</familyName>
      <affiliation>Linköping University, Sweden</affiliation>
    </creator>
    <creator>
      <creatorName>Papadopoulos, Lazaros</creatorName>
      <givenName>Lazaros</givenName>
      <familyName>Papadopoulos</familyName>
      <affiliation>National Technical University of Athens, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Kessler, Christoph</creatorName>
      <givenName>Christoph</givenName>
      <familyName>Kessler</familyName>
      <affiliation>Linköping University, Sweden</affiliation>
    </creator>
    <creator>
      <creatorName>Soudris, Dimitrios</creatorName>
      <givenName>Dimitrios</givenName>
      <familyName>Soudris</familyName>
      <affiliation>National Technical University of Athens, Greece</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Portable exploitation of parallel and heterogeneous HPC architectures in neural simulation using SkePU</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-06-01</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3943728</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1145/3378678.3391889</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The complexity of modern HPC systems requires the use of new tools that support advanced programming models and offer portability and programmability of parallel and heterogeneous architectures. In this work we evaluate the use of SkePU framework in an HPC application from the neural computing domain. We demonstrate the successful deployment of the application based on SkePU using multiple back-ends (OpenMP, OpenCL and MPI) and present lessons-learned towards future extensions of the SkePU framework.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/801015/">801015</awardNumber>
      <awardTitle>Enhancing Programmability and boosting Performance Portability for Exascale Computing Systems</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
6
8
views
downloads
Views 6
Downloads 8
Data volume 26.3 MB
Unique views 5
Unique downloads 7

Share

Cite as