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The development of the governing equations for fluid flow in a surface-following
coordinate system is essential to investigate the fluid flow near an interface deformed
by propagating waves. In this paper, the governing equations of fluid flow, including
conservation of mass, momentum and energy balance, are derived in an orthogonal
curvilinear coordinate system relevant to surface water waves. All equations are
further decomposed to extract mean, wave-induced and turbulent components. The
complete transformed equations include explicit extra geometric terms. For example,
turbulent stress and production terms include the effects of coordinate curvature on
the structure of fluid flow. Furthermore, the governing equations of motion were
further simplified by considering the flow over periodic quasi-linear surface waves
wherein the wavelength of the disturbance is large compared to the wave amplitude.
The quasi-linear analysis is employed to express the boundary layer equations in the
orthogonal wave-following curvilinear coordinates with the corresponding decomposed
equations for the mean, wave and turbulent fields. Finally, the vorticity equations
are also derived in the orthogonal curvilinear coordinates in order to express the
corresponding velocity–vorticity formulations. The equations developed in this paper
proved to be useful in the analysis and interpretation of experimental data of fluid
flow over wind-generated surface waves. Experimental results are presented in a
companion paper.
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1. Introduction
The investigation of shear flows with streamline curvature are generally challenging

problems in fluid mechanics with various applications in engineering and science.
Boundary layer flows, in particular, are strongly affected by even a mild surface
curvature through the production of additional rates of strain (Bradshaw 1973).
Although the effects of curvature on turbulent flows over convex and concave
solid and fixed surfaces with a mild curvature have been extensively investigated
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theoretically (e.g., Bradshaw 1969; So 1975; Hall & Horseman 1991; Holloway & Tavoularis
1998), experimentally (e.g., So &Mellor 1973; Ramaprian & Shivaprasad 1978, 1982; Hoffmann
et al. 1985; Barlow & Johnston 1988; Holloway & Tavoularis 1992; Holloway et al. 2005), and
numerically (e.g., Moser & Moin 1987; Neves et al. 1994; Kim & Rhode 2000; Blin et al. 2003;
Dave et al. 2013) over the past decades, there exist substantially fewer studies of the flow in
the boundary layer over liquid, propagating surface waves (e.g., Takeuchi et al. 1977; Hsu et al.
1981; Hsu & Hsu 1983; Sullivan et al. 2000; Yang & Shen 2010; Buckley & Veron 2016). Thus,
the current understanding of airflow over surface waves, for example, remains hampered by the
complexities associated with the geometrical shape of surface waves. It is observed, in general,
that the surface curvature not only changes the mean velocity profiles but also exerts considerable
influences on the fluctuation velocity components, shear stress, and turbulent stress compared to
similar flows over flat surfaces.
To capture these effects of curvature on the structure of the fluid flow, it is practical to express

the governing equations of motion in general orthogonal or non-orthogonal coordinates. Indeed,
the additional production, convection, and diffusion terms due to the curvature of flow appear
explicitly in those kinds of coordinate systems (Bradshaw 1973; Moser & Moin 1987). One way
to transform the equations of motion from rectangular coordinates to the general coordinates is to
transform the coordinate system but not the dependent flow variables such as velocity components.
That is, the rectangular flow field is interpreted in a curvilinear coordinate system. For the study
of water waves, for example, this approach has been employed by Hsu et al. (1981), Hsu &
Hsu (1983), Sullivan et al. (2000), Shen et al. (2003), Yang & Shen (2010, 2017), Druzhinin
et al. (2016), and Yang et al. (2018), among others, and it yields relatively simple equations
where the results can be readily interpreted. Moreover, the experimental realizations, particularly
single-point measurements, can be performed quite easily (Hsu et al. 1981). Another approach
is to completely transform the coordinate system along with the dependent flow variables into
the curvilinear coordinate system such that the dependent variables, for example, the velocity
components are aligned with the axes of the new coordinate system (e.g., Gent & Taylor 1976;
Al-Zanaidi & Hui 1984; Shyu & Phillips 1990; Longuet-Higgins 1998). While this kind of
transformation simplifies the theoretical analysis as well as numerical modelling, it is generally
impractical for conducting experiments (Hsu et al. 1981). It should also be pointed out that
although the non-orthogonal coordinates are frequently employed in the simulations of airflow
over waves (e.g., Sullivan et al. 2008; Yang & Shen 2010; Hara & Sullivan 2015; Xuan et al.
2019; Hao & Shen 2019) mainly due to convenience in grid generation, they introduce additional
complexities in the governing equations. These complexities are primarily associated with the
presence of the covariant and contravariant velocity components that leads to different forms of
the governing equations. Furthermore, the general curvilinear non-orthogonal coordinates give
rise to extra metric tensors, and besides that, the fields in the conservation equations might not
have their usual physical meanings (see Richmond et al. 1986; Finnigan 2004). The governing
equations are, however, significantly more straightforward in the orthogonal coordinate systems
and preserve much of the analytical simplicity of their counterpart equations in the Cartesian
coordinates. The main reason is that no distinction between covariant and contravariant vector
and tensor fields exists for the orthogonal coordinate systems.
In the study of ocean surface waves, the wave-coherent motion poses serious challenges to the

full transformation of the problem where the separation of mean, wave, and turbulent is required
for a complete treatment of the wave-turbulence interaction (Einaudi & Finnigan 1993). The
triple decomposition of flow field variables into mean, wave, and turbulent components was first
introduced by Hussain & Reynolds (1972) and has been extensively applied to air-sea interaction
studies. A great number of these numerical and experimental studies, however, are carried in a
fixed Cartesian frame of reference (e.g., Finnigan & Einaudi 1981; Einaudi & Finnigan 1993;
Mastenbroek et al. 1996; Makin & Kudryavtsev 1999; Hara & Belcher 2004; Rutgersson &
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Sullivan 2005). In such coordinate systems, the wave-associated motions cannot be captured
below the highest wave crest (Sullivan et al. 2000; Hara & Sullivan 2015), thereby demonstrating
the importance of employing a wave-following coordinate system. It should also be noted here
that while recent computational studies now routinely employ the algebraic mapping to investigate
the wave-induced motions very close to the surface and to address difficulties associated with
the non-rectangular physical domain over surface waves, experimental studies have just begun to
report such data using wave-following coordinate systems (e.g., Buckley & Veron 2016, 2017).
Air-sea interaction studies investigating fluid flow, including continuity, momentum, and

kinetic energy equations along with the corresponding triple-decomposed equations in a general
coordinate system are extremely sparse. Gent & Taylor (1976) expressed the conventional
Reynolds decomposed continuity,momentum, and turbulent energy equations in awave-following
curvilinear coordinate system proposed by Benjamin (1959) in order to numerically investigate
the two-dimensional (2D) flow field in a turbulent boundary layer over water waves. The
mean governing equations were then closed by the use of an isotropic eddy viscosity model.
The equations of 2D turbulent fluid motion were also derived for an orthogonal streamline
coordinate system by Finnigan (1983). It was shown that the transformed mean equations for
the first and second moments of velocity involve explicit extra terms representing the influences
of streamline curvature and the acceleration of the mean flow. These Reynolds decomposed
equations were also expressed by Kantha & Rosati (1990) in generalized orthogonal curvilinear
coordinates to study the influence of streamline curvature on small-scale turbulence. The algebraic
transformation of the governing equations into a surface-fitted curvilinear coordinate system has
been widely employed in computational studies of surface waves over the past decades. In order
to investigate the turbulent flow over water waves, a 2D conformal and orthogonal transformation
was used by Sullivan et al. (2000) to map the physical domain on to a computational grid, and
consequently, transform only the coordinates in the governing equations into a surface-fitted,
orthogonal coordinate system. To examine the wind-wave interaction in the marine boundary
layer, Sullivan et al. (2008) expressed the 2D large-eddy simulation (LES) equations including
mass conservation, momentum, and energy transport equations in a non-orthogonal, hybrid
rectangular-curvilinear computational coordinate system through introducing the contravariant
flux velocities (see also Sullivan et al. 2000, 2014). The ensemble-averaged equations for the
momentum and energy budgets are further derived by Sullivan et al. (2018) in similar hybrid
computational coordinates where the vertical lines are held fixed while the horizontal axis is
wave-following.
A comprehensive analysis of the wave boundary layer turbulence over surface waves in a

strongly forced condition was carried out recently by Hara & Sullivan (2015). In their study,
the dynamical governing equations along with the corresponding mean, wave, and turbulent
equations were derived in a hybrid, wave-following coordinate system similar to the one used
by Sullivan et al. (2014) and Sullivan et al. (2018). The triple decomposition formulations in
wave-following coordinates define the expression for the wave-induced stress as a sum of the
wave and pressure stresses compared to the traditional definition (e.g., Makin & Kudryavtsev
1999; Hara & Belcher 2004) in terms of the wave-coherent velocity components. Finally, there
are some recent attempts to express the viscous tangential stresses at the air-water interface in an
orthogonal wave-following coordinate system (see Buckley & Veron 2017; Iafrati et al. 2019),
but we note that these estimates are valid only in the linear wave limit.
In the study of turbulent flows over propagating surface waves, the necessity of employing a

wave-following coordinate system has been recognized (e.g., Hsu et al. 1981; Sullivan et al. 2000;
Hara & Sullivan 2015), and therefore, as mentioned above, the algebraic mapping of rectangular
coordinates into wave-following coordinates has commonly been employed in theoretical and
numerical studies, and just recently, in laboratory measurements. However, the further step of
fully transforming the governing equationswith the dependent flow variables into those coordinate
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systems is rarely taken, and to the best of the authors’ knowledge, the decomposed mean, wave,
and turbulent equations required for the complete treatment of wave-turbulence interaction are not
yet fully derived. This is in part due to the mathematical difficulties associated with the curvilinear
coordinates and the fact that experimental studies have not been able to estimate the additional
geometric terms appearing in the transformed equations. In the current study, therefore, we present
the fully-transformed governing equations of fluid flow including continuity, momentum, and
kinetic energy equations in the wave-following orthogonal curvilinear coordinate system along
with the triple-decomposed form of those equations. The orthogonal general coordinate system
is physically intuitive and appropriate for the study of the turbulent flow over surface waves since
it can provide an alternative framework in which the surface-parallel continuity, momentum,
and energy budget equations can be thoroughly investigated which leads to a better physical
interpretation of many quantities in the governing equations. The complete transformation of the
governing equations also directly allows us to account for the streamline curvature. Finally, we
simplify the equations for the mean, wave, and turbulent fields using classical boundary layer
approximations. The fluid flow governing equations in orthogonal curvilinear coordinates are
presented in § 2, and the corresponding triple-decomposed equations are expressed in § 3. We
narrow our focus to the weakly non-linear waves in § 4 and perform a boundary layer scaling.
The triple-decomposed equations for the boundary layer are then derived in § 4.1. We finally
offer a brief conclusion in § 5. The § Appendix A provides the velocity-vorticity formulations in
orthogonal curvilinear coordinates. Analysis of experimental data using the framework developed
in this paper are presented in a companion paper (Yousefi et al. 2019).

2. Fluid flow governing equations
The governing equations of fluid motion, including continuity, momentum, and kinetic energy

equations in a turbulent flow are first derived in an orthogonal curvilinear coordinate system.
These equations are then decomposed into mean, wave-induced, and turbulence components by
employing the triple decomposition technique. To express the equations of motion, the flow is
assumed to have a constant density, a constant kinematic viscosity, and velocity components
u = (D1, D2, D3) in G1, G2, and G3 directions, respectively. The continuity, momentum, and energy
equations for an incompressible fluid can be written in an invariant vector form as,

∇ ·u = 0 (2.1)

d
mu

mC
+ d (u · ∇) u = −∇? +∇ · 3 (2.2)

d
m4

mC
+ d (∇ · 4u) = −∇ · (?u) + (∇ · 3) ·u (2.3)

where u is the velocity vector, d is the density, and ? is the pressurewhich includes the static gravity
term 6I. Also 3 = 2`Y is the viscous stress tensor, ` is the dynamic viscosity, 2Y = (∇u+ (∇u)) )
is the strain rate tensor, and 4 = (u ·u)/2 is the kinetic energy. The velocity gradient tensor is
noted ∇u and (∇u)) is its transpose.

2.1. Orthogonal curvilinear coordinates
Fixed rectangular coordinate systems are not able to capture the effects of streamline curvature,
and particularly in the study of wind waves, no spatially or temporally averaged information can
be obtained beneath the highest wave crest (e.g., Sullivan et al. 2000; Hara & Sullivan 2015). In
order to investigate the wave-induced motions near the interface and/or below the wave crest, it is
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thus necessary to employ a coordinate system that closely follows the wave shapes. For example,
Hara & Sullivan (2015) and Yang & Shen (2017) have recently employed a coordinate system
that follows the vertical displacement due to the surface waves. However, we find that the strictly
orthogonal curvilinear coordinate system is practical and physically intuitive. In this section, we
derive the continuity, momentum, and energy equations in an orthogonal curvilinear coordinate
system.
Let G8 = (G1, G2, G3) represent the Cartesian coordinate system and b8 = (b1, b2, b3) represent a

set of an arbitrary orthogonal curvilinear coordinates. It is well understood that the distinction
between covariant and contravariant components in general non-orthogonal curvilinear coordi-
nates vanishes in orthogonal curvilinear coordinate systems. The orthogonal coordinate basis can
then be defined as (Vinokur 1974; Redzic 2001; Shikhmurzaev & Sisoev 2017),

/8 =
mG:

mb8
e
∧
: (2.4)

where e
∧
: are the corresponding Cartesian orthonormal basis. The base vectors in orthogonal

curvilinear coordinates are not necessarily unit vectors. The orthonormal base vectors in
orthogonal curvilinear coordinates can be obtained by,

/
∧
8 =

/8
ℎ8

(2.5)

where the quantities ℎ8 are the so-called scale factors of the orthogonal curvilinear coordinate
system given by,

(ℎ1)2 =
(
mG1

mb1

)2
+

(
mG2

mb1

)2
+

(
mG3

mb1

)2

(ℎ2)2 =
(
mG1

mb2

)2
+

(
mG2

mb2

)2
+

(
mG3

mb2

)2

(ℎ3)2 =
(
mG1

mb3

)2
+

(
mG2

mb3

)2
+

(
mG3

mb3

)2

(2.6)

In order to express equations (2.1) to (2.3) in orthogonal curvilinear coordinates, we will first
spell out the differential vector operators including gradient, divergence, curl, and Laplacian in
orthogonal coordinates. These operators are fairly standard and can be found in the literature (e.g.,
Aris 1962; Batchelor 1967; Anderson et al. 1984; Redzic 2001; Nikitin 2006), but we choose to
include them here for completeness. Furthermore, in order to substantially simplify the notation in
the remainder of this paper, we propose a notation that builds on andmodifies the standard Einstein
summation convention. Indeed, throughout this work the index notation is such that no summing
is carried whenever the indices are enclosed within parentheses. Accordingly, the indices within
parentheses only take the value of dummy or free indexes. All other aspects of the summation
convention remain unchanged; any index that is repeated twice in any term of expression is called
a dummy or repeated index to be summed over the range of its values and any index not repeated
is called free index taking any value in its range. For instance, the suffix (8) in the following
expression only takes the value of free index 8, i.e. D8D 9^ (8) 9 = D1D1^11 +D1D2^12 +D1D3^13, and
the suffix ( 9) in the following expression takes the value of dummy index 9 , i.e. D 9D 9^ ( 9)8 =
D1D1^18 +D2D2^28 +D3D3^38 . With this notation, the standard vector and tensor operators can be
then expressed in the orthogonal curvilinear coordinate systems in a way that we find elegant and
conveniently compact. If i is an arbitrary scalar, A is an arbitrary vector, and T is an arbitrary
tensor field, the expressions for the gradient, divergence, curl, and Laplacian operators in the
orthogonal curvilinear coordinates become,
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∇i =
1
ℎ (8)

mi

mb8
/
∧
8 (2.7)

∇ ·A =
1
ℎ

m

mb8

(
ℎ

ℎ (8)
08

)
(2.8)

∇×A = Y8 9:
ℎ (8)
ℎ

m

mb 9

(
ℎ (:)0:

)
/
∧
8 (2.9)

∇2i =
1
ℎ

m

mb8

(
ℎ

ℎ (8)ℎ (8)

mi

mb8

)
(2.10)

where ℎ = ℎ1ℎ2ℎ3. Furthermore,

(A · ∇)B =
[
0 9

ℎ ( 9)

m18

mb 9
+

(
081 9^ (8) 9 − 0 91 9^ ( 9)8

)]
/
∧
8 (2.11)

∇ ·T =
[

1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
)8 9

)
+

(
)8 9^ (8) 9 −)9 9^ ( 9)8

) ]
/
∧
8 (2.12)

In the above equations, 08 , 18 , and )8 9 are respectively the components of the vector A, vector B,
and tensor T defined based on the orthonormal basis, and ^8 9 are the components of the curvature
matrix which account for the curvature of the coordinate system and can be defined as,

K =



1
ℎ1ℎ1

mℎ1

mb1

1
ℎ1ℎ2

mℎ1

mb2

1
ℎ1ℎ3

mℎ1

mb3

1
ℎ1ℎ2

mℎ2

mb1

1
ℎ2ℎ2

mℎ2

mb2

1
ℎ2ℎ3

mℎ2

mb3

1
ℎ3ℎ1

mℎ3

mb1

1
ℎ2ℎ3

mℎ3

mb2

1
ℎ3ℎ3

mℎ3

mb3


(2.13)

Thus, all terms in the continuity, momentum, and energy equations, equations (2.1) through (2.3),
can now be expressed in orthogonal curvilinear coordinates. The vector operators presented in
equations (2.7) to (2.12) are consistent with those given in the literature by, for example, Aris
(1962), Vinokur (1974), Anderson et al. (1984), Redzic (2001), and Nikitin (2006) but expressed
in a compact and practical form.

2.2. Continuity, momentum, and energy equations
In order to express the fluid governing equations, consider arbitrary orthogonal curvilinear
coordinates b8 = (b1, b2, b3) with corresponding velocity components [ = (*1,*2,*3). The
velocity components in orthogonal curvilinear coordinates are projections of the velocity
vector into the coordinate axes and thus related to the Cartesian velocities by the coordinate
transformation. The components of the velocity vector u in both Cartesian and orthogonal
curvilinear coordinate systems are schematically illustrated in figure 1. Using the vector operators
introduced in equations (2.7) through (2.12), the continuity, momentum, and energy equations
can be then written as,

1
ℎ

m

mb8

(
ℎ

ℎ (8)
*8

)
= 0 (2.14)
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x1

x3 ξ3

u1

u3

U1

U3

ξ1

u

Figure 1. Two-dimensional schematics of the velocity components in Cartesian and orthogonal curvilinear
coordinate systems. In which, (D1, D3) are components of the velocity vector u corresponding to the (G1, G3)
Cartesian coordinates and (*1,*3) are the components of the velocity vector u corresponding to the arbitrary
(b1, b3) orthogonal curvilinear coordinates.

m*8

mC
+
* 9

ℎ ( 9)

m*8

mb 9
+

(
*8* 9^ (8) 9 −* 9* 9^ ( 9)8

)
= − 1

d

1
ℎ (8)

m?

mb8
+ 1
d

[
1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
g8 9

)
+

(
g8 9^ (8) 9 − g9 9^ ( 9)8

) ] (2.15)

m4

mC
+ *8
ℎ (8)

m4

mb8
= − 1

d

*8

ℎ (8)

m?

mb8
+ 1
d

[
*8

ℎ

m

mb 9

(
ℎ

ℎ ( 9)
g8 9

)
+*8

(
g8 9^ (8) 9 − g9 9^ ( 9)8

) ]
(2.16)

where 4 = (*8*8)/2.
Here, it is noted that the governing equations (2.14) to (2.16) are obtained using a time-

independent transformation. The continuity, momentum, and energy equations given here for
the orthogonal coordinates are quite similar to the conventional Cartesian coordinate system,
except for the additional curvature terms that, in fact, account for the curvature of the coordinate
system and produced due to the spatial dependence of the base vectors. The Cartesian coordinate
equations are simply recovered by noting that ℎ8 = 1 for rectangular coordinates. The reader may
directly verify that the expanded form of the governing equations (2.14) to (2.16) are identical
to the continuity and momentum equations given in the literature for an orthogonal curvilinear
coordinate system (e.g., Brown&Hung 1977;Hung&Brown1977;Raithby et al. 1986;Blumberg
& Herring 1987; Nikitin 2006; Shen et al. 2015).
Again, the viscous stress is,

g8 9 = 2`(8 9 (2.17)
where the components of the strain rate tensor can now be expressed in an orthogonal coordinate
system as,

(8 9 =
1
2

[
1
ℎ ( 9)

m*8

mb 9
+ 1
ℎ (8)

m* 9

mb8
−

(
*(8) ^8 9 +*( 9) ^ 98

)
+2*<^ (8)<X8 9

]
(2.18)

In order to provide a more in-depth explanation of the acceleration and stress terms in equation
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x1

x3 ξ3

ξ1

r31=1/κ31

ds=h3dζ

τ33

τ33

τ31

τ31

dζ
O

x1

x3 ξ3

ξ1

r13=1/κ13

ds=h1dξ

τ11

τ13
τ13

τ11

dξ

dξ

O

Figure 2. Illustration of the viscous stress field along with the curvature parameter in the b1 − b3 plane of
an arbitrary orthogonal curvilinear coordinate system. Here, A31 = 1/^31 and A13 = 1/^13 are the radius of
curvature along the constant b1− and b3−coordinate, respectively, with respect to the b1 − b3 plane. The
point where two tangent vectors b1 and b1 + 3b1 intersect is called the centre of curvature and denoted by
the point $.

(2.15), which do not traditionally appear in the Cartesian equations, we confine the following
discussion to two-dimensional flows in which we neglect the curvature in the lateral direction. The
stress components are schematically illustrated along with the curvature parameters in figure 2 in
the b1 − b3 plane of an orthogonal, wave-following coordinate system. The radius of curvature,
defined as the reciprocal of the curvature, along the constant b1−coordinate with respect to the
b1− b3 plane is A31 = 1/^31, whereas the radius of curvature is A13 = 1/^13 along a line of constant
b3. Let’s rewrite the b1−momentum equation for the two-dimensional steady case described in
figure 2, as,

*1

ℎ1

m*1

mb1
+ *3

ℎ3

m*1

mb3
+ (*1*3^13−*3*3^31) = −

1
d

1
ℎ1

m?

mb1

+ 1
d

[
1
ℎ

m

mb1
(ℎ2ℎ3g11) +

1
ℎ

m

mb3
(ℎ1ℎ2g13) + (g13^13− g33^31)

] (2.19)

The contributions of the curvature, or equivalently the radius of curvature, to the fluid-particle
acceleration components appears as additional terms. For example (*1*3^13−*3*3^31) are due
to the curvature of the coordinates in b3 and b1 directions, respectively. As noted by Raithby et al.
(1986), the additional component g13^13 in the viscous stress term arises because g13 has a net
component in b1 direction as shown in figure 2a. In a similar fashion, the term g33^31 arises due to
the fact that g33 stresses are seen to have a net component in the negative b1 direction (see figure
2b). The interpretation of the momentum equations in the other directions is quite similar to the
b1−momentum equation and it is not presented here to keep brevity.
In orthogonal curvilinear coordinates, both the radius of curvature and the centre of curvature

are functions of the arc length, and consequently, they vary from point to point. Moreover, at
spatial locations where the b-coordinate has inflections points, the curvature is zero and the radius
of curvature is infinite, i.e. ^31 = 0 and A31 =∞.

3. Application to surface waves
In the section above, we have reviewed the conservation equations for fluid in motion using an

arbitrary orthogonal curvilinear coordinate system. Our interest, however, is to examine the mean,
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wave-induced, and turbulent flow on both sides of a wavy interface. Specifically, we are interested
in the airflow above surface gravity waves but do not consider waves with large curvatures such as
capillary waves. Experimental results of airflowmeasurements over wind waves will be presented
in the accompanying paper (Yousefi et al. 2019). We note here that in the derivations above, the
curvilinear system does not vary in time. Strictly speaking, this simply means that the wave shape
is assumed to remain unchanged as the waves propagate. For monochromatic waves, the flow is
thus examined after an initial Galilean transformation in which the Cartesian system is moving
with the wave phase speed so that the wave shape becomes steady. In the case of wind waves
with a spectrum of wave modes, the peak wave speed can be used for the Galilean transformation
(Sullivan et al. 2018). In this case, the wave shape is quasi-steady. This restricts the analysis of
the flow to time scales that are faster than that over which the wave shape evolves substantially.
We expect this to be the case for the airflow over wind waves when the wind speed is larger
than the wave phase speed (i.e. wind forced waves). Indeed, based on the wind-wave spectrum
(Elfouhaily et al. 1997; Mueller & Veron 2009), we estimate that, in the laboratory and for winds
ranging from 5 to 25 m s−1, the wave shape remains correlated at 80% for at least 0.7 peak
wave period. In the field, after 0.7 peak wave period, the correlation reduces to 70%. Therefore,
over times corresponding to a fraction of the peak wave period, the coordinate transformation
outlined above (with Galilean transformation using the peak wave speed) holds for wind waves
with multiple modes. We note, however, that the water-side flow is likely to evolve on time scales
that are comparable or longer than the time scales over which the wave shape changes.
The issue of separating waves and turbulence has long been a recurrent challenge in the study

of surface waves (e.g., Hussain & Reynolds 1970; Lumley & Terray 1983; Thais & Magnaudet
1995). Here, in order extract the organized wave-coherent fluctuations in the flow field from the
background turbulence, we decompose instantaneous variables into a phase-averaged component,
〈 5 〉 (/, C), and a turbulent fluctuation component, 5 ′ (/, C), as (Hussain & Reynolds 1970),

5 (/, C) = 〈 5 〉 (/, C) + 5 ′ (/, C) (3.1)
The phase averaged quantity is defined as,

〈 5 〉 (/, C) = lim
#→∞

1
#

#∑
==1

5 (/ +=_, C)

where # is the number of realizations and _ is the surface wave wavelength. The phase average
is the average of the values of 5 at a particular phase of the wave. The phase average can be
further decomposed into the sum of a mean, 5̄ (/), and a wave-induced, 5̃ (/, C), component, i.e.
〈 5 〉 (/, C) = 5̄ (/) + 5̃ (/, C). The mean is defined as the ensemble average over all possible phases.
This separation leads to the following so-called triple decomposition of an instantaneous quantity,

5 (/, C) = 5̄ (/) + 5̃ (/, C) + 5 ′ (/, C) (3.2)
where the wave-induced motion has a zero mean but is phase-coherent with the surface waves and
thus not considered turbulent per se. The general properties of the ensemble and phase averages
can be found in reports by Hussain &Reynolds (1970), Hussain &Reynolds (1972), and Reynolds
& Hussain (1972). The equations of motion including continuity, momentum, and energy for an
organizedwave in a turbulent shear flow are then derived using this triple decomposition approach.

3.1. Continuity and momentum equations
The starting point to derive the decomposed equations is to substitute the decomposed field
quantities into the governing equations, and then averaging; the ensemble averaging is applied
first and then the phase averaging. For an incompressible fluid, the mean, wave-induced, and
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turbulent continuity equations in an orthogonal curvilinear coordinate system can therefore be
expressed as,

1
ℎ

m

mb8

(
ℎ

ℎ (8)
*8

)
= 0 (3.3)

1
ℎ

m

mb8

(
ℎ

ℎ (8)
*̃8

)
= 0 (3.4)

1
ℎ

m

mb8

(
ℎ

ℎ (8)
* ′8

)
= 0 (3.5)

Using continuity, the instantaneous momentum equation (2.15) can be written as,

m*8

mC
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
*8* 9

)
+

(
*8* 9^ (8) 9 −* 9* 9^ ( 9)8

)
= − 1

d

1
ℎ (8)

m?

mb8

+ 1
d

[
1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
g8 9

)
+

(
g8 9^ (8) 9 − g9 9^ ( 9)8

) ] (3.6)

Substituting the decomposed velocity and pressure fields into the momentum equation above
(3.6) and then applying ensemble averaging yields the momentum equation for the mean flow,

�*8

�C
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
*̃8*̃ 9

)
+

(
*̃8*̃ 9^ (8) 9 −*̃ 9*̃ 9^ ( 9)8

)
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
* ′
8
* ′
9

)
+

(
* ′
8
* ′
9
^ (8) 9 −* ′9* ′9^ ( 9)8

)
= − 1

d

1
ℎ (8)

m ?̄

mb8
+ 1
d

[
1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
ḡ8 9

)
+ ḡ8 9^ (8) 9 − ḡ9 9^ ( 9)8

] (3.7)

where the ratio of the vertical scale to the principal radius of curvature of the surface is assumed
to be small. Also, the mean material derivative defined as,

�

�C
=
m

mC
+

(
U · ∇

)
(3.8)

and where,

ḡ8 9 = 2`(̄8 9 = `

[
1
ℎ ( 9)

m*8

mb 9
+ 1
ℎ (8)

m* 9

mb8
−

(
* (8) ^8 9 +* ( 9) ^ 98

)
+2*<^ (8)<X8 9

]
(3.9)

is the mean viscous stress, (̄8 9 is the mean strain rate tensor, −* ′
8
* ′
9
is the turbulent stress, and

−*̃8*̃ 9 is the wave-induced stress (e.g., Hussain & Reynolds 1972; Hsu et al. 1981; Buckley &
Veron 2016). The wave-induced stress term evidently makes the mean momentum equation (3.7)
different from the conventional Reynolds-averaged equations for the turbulent flows in orthogonal
curvilinear coordinate systems (see for example Nash & Patel 1972; Richmond et al. 1986; Chen
et al. 1990). The wave-induced stress is not only significant in the exchange of momentum and
energy between the wind and waves particularly in the wave generation process (e.g., Hsu et al.
1981; Makin & Mastenbroek 1996) but also is a substantial portion of the total stress close to the
surface (e.g., Janssen 1989; Makin et al. 1995; Makin & Kudryavtsev 2002). Equations (3.3) and
(3.7) together describe the motion of the mean field.
The wave-induced momentum equation can be obtained by applying the phase-averaged
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operator to the instantaneous momentum equation (3.6 after substituting the decomposed velocity
and pressure terms therein), and substracting the mean momentum equation. The wave-induced
momentum equation in an orthogonal curvilinear coordinate system can be therefore expressed
as,

�*̃8

�C
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
*8*̃ 9

)
+

(
*̃8* 9^ (8) 9 −*̃ 9* 9^ ( 9)8

)
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
'̃8 9

)
+

(
'̃8 9^ (8) 9 − '̃ 9 9^ ( 9)8

)
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
Ã8 9

)
+

(
Ã8 9^ (8) 9 − Ã 9 9^ ( 9)8

)
= − 1

d

1
ℎ (8)

m ?̃

mb8
+ 1
d

[
1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
g̃8 9

)
+ g̃8 9^ (8) 9 − g̃9 9^ ( 9)8

]
(3.10)

where

g̃8 9 = 2`(̃8 9 = `

[
1
ℎ ( 9)

m*̃8

mb 9
+ 1
ℎ (8)

m*̃ 9

mb8
−

(
*̃(8) ^8 9 +*̃( 9) ^ 98

)
+2*̃<^ (8)<X8 9

]
(3.11)

is the wave-induced viscous stress, (̃8 9 is the wave-induced strain rate tensor, Ã8 9 = 〈* ′8* ′9〉 −* ′8* ′9
is the wave-induced turbulent stress (e.g., Reynolds & Hussain 1972; Hsu et al. 1981; Einaudi
et al. 1984) which represents the oscillation of the turbulent stress due to the presence of surface
waves, and '̃8 9 = *̃8*̃ 9 −*̃8*̃ 9 is the fluctuating part of the wave stress (e.g., Einaudi et al. 1984;
Rutgersson & Sullivan 2005). Analogous to wave-induced turbulent stress, '̃8 9 can be interpreted
as the nonlinear wave contribution to the total fluctuation stress. Moreover, the term *̃8*̃ 9 in the
wave-induced wave stress term describes the momentum flux due to wave fluctuations. These
terms are of considerable importance in coupling the wave and turbulence fields. Equations (3.4)
and (3.10) together describe the wave-induced motion.
In addition to the mean and wave-induced momentum equations, the momentum equation

for the background turbulence can also be derived by subtracting equations (3.7) and (3.10)
from the decomposed, instantaneous momentum equation. Thus, the momentum equation for the
turbulence in an orthogonal general coordinate system is,

�* ′
8

�C
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
* ′8*̃ 9

)
+

(
*̃8*

′
9^ (8) 9 −*̃ 9* ′9^ ( 9)8

)
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
*8*

′
9

)
+

(
* ′8* 9^ (8) 9 −* ′9* 9^ ( 9)8

)
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
*̃8*

′
9

)
+

(
* ′8*̃ 9^ (8) 9 −* ′9*̃ 9^ ( 9)8

)
+ 1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
* ′8*

′
9

)
+

(
* ′8*

′
9^ (8) 9 −* ′9* ′9^ ( 9)8

)
−

[
1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
〈* ′8* ′9〉

)
+

(
〈* ′8* ′9〉^ (8) 9 − 〈* ′9* ′9〉^ ( 9)8

)]
= − 1

d

1
ℎ (8)

m?′

mb8
+ 1
d

[
1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
g′8 9

)
+ g′8 9^ (8) 9 − g′9 9^ ( 9)8

]
(3.12)

where
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g′8 9 = 2`(′8 9 = `

[
1
ℎ ( 9)

m* ′
8

mb 9
+ 1
ℎ (8)

m* ′
9

mb8
−

(
* ′(8) ^8 9 +*

′
( 9) ^ 98

)
+2* ′<^ (8)<X8 9

]
(3.13)

is the turbulent viscous stress and (′
8 9

is the turbulent strain rate tensor. The turbulence of the
fluid motion can be then fully expressed by equations (3.5) and (3.12).

3.2. Mean, wave-induced, and turbulent kinetic energy equations
In this section, we expand the kinetic energy budget equations and specifically look at the mean,
wave-coherent, and turbulent kinetic energy. Following Hussain & Reynolds (1972), Finnigan &
Einaudi (1981), and Einaudi & Finnigan (1993), an equation for the mean kinetic energy budget
can be obtained by multiplying the mean momentum equation (3.7) by *8 and then successively
phase- and ensemble-averaging,

�4̄

�C
=

1
ℎ

m

mb 9

(
− ℎ

ℎ ( 9)

?̄

d
* 9 −

ℎ

ℎ ( 9)
*8*̃8*̃ 9 −

ℎ

ℎ ( 9)
*8*

′
8
* ′
9
+ ℎ

ℎ ( 9)
2a*8 (̄8 9

)
−2a(̄8 9 (̄8 9 +*̃8*̃ 9 (̄8 9 +* ′8* ′9 (̄8 9

(3.14)

where 4̄ =*8*8/2 is the mean kinetic energy per unit mass. The left-hand side of this equation
describes the rate of change of the mean kinetic energy and the right-hand side represents different
mechanisms that precipitate such changes. The first four terms on the right-hand side of equation
(3.14) are in flux divergence form, and consequently, describe the spatial transport or redistribution
of the mean kinetic energy by the mean pressure, wave perturbations, turbulent stresses, and
viscous stresses, respectively. The fifth term 2a(̄8 9 (̄8 9 represents the viscous dissipation of the
mean kinetic energy. The last two terms in equation (3.14) are analogous to the well-known
shear production term and represent the exchange of energy between the mean flow and the
wave-coherent and turbulent fields, respectively. The mean turbulent stress is likely to be positive
over the ocean surface waves (e.g., Borue et al. 1995; Shen et al. 2003; Buckley & Veron 2016),
while the mean wave stress is positive below the critical layer and negative above (e.g., Townsend
1972; Hsu et al. 1981; Sullivan et al. 2000; Yang & Shen 2010). It is also observed that the mean
shear is positive over propagating surface waves (e.g., Hara & Sullivan 2015; Husain et al. 2019).

The balance of the kinetic energy for the wave-induced motion can be similarly derived by
multiplying the wave-induced momentum equation (3.10) with the wave-induced velocity fields
and then successively applying the phase- and ensemble-averaged operators,

� ¯̃4
�C

=
1
ℎ

m

mb 9

(
− 1
d

ℎ

ℎ ( 9)
?̃*̃ 9 −

ℎ

ℎ ( 9)
*̃8 Ã8 9 −

ℎ

ℎ ( 9)
*̃8 '̃8 9 +

ℎ

ℎ ( 9)
2a*̃8 (̃8 9

)
−2a(̃8 9 (̃8 9 −*̃8*̃ 9 (̄8 9 + '̃8 9 (̃8 9 + Ã8 9 (̃8 9

(3.15)

where 4̃ = *̃8*̃8/2 is the wave kinetic energy per unit mass and ¯̃4 = *̃8*̃8/2 is the ensemble-
averaged wave kinetic energy. As previous, the left-hand side of equation (3.15) represents the
rate of change of the mean kinetic energy, and the right-hand side, representing the transport,
production, and dissipation mechanisms producing such changes. The first four terms on the
right-hand side of equation (3.15) express the transport of the wave kinetic energy by pressure,
wave-induced turbulent stresses, wave-induced wave stresses, and viscous stresses or molecular
diffusion. The fifth term, similar to its counterpart in equation (3.14), represents the viscous
dissipation rate due to the wave-induced motion. The sixth term is the production term due to
the periodic wave which represents the exchanges between mean shear and wave motion. This
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term also appears in the mean kinetic energy budget equation (3.14) but with the sign reversed.
The last two terms in equation (3.15) are the rate of energy transfer between the wave-induced
flow and in turn wave-induced wave stress and wave-induced turbulent stress. These terms are
involved in the exchange of kinetic energy between the wave and turbulent fields (see Cheung &
Street 1988; Einaudi & Finnigan 1993; Rutgersson & Sullivan 2005). In order to obtain further
insights, it should be noticed that the third and seventh terms of the right-hand side of the wave
kinetic energy equation can be combined,

1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
*̃8 '̃8 9

)
− '̃8 9 (̃8 9 =

1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)
4̃D̃ 9

)
(3.16)

which explicitly describes the transport of the wave kinetic energy by the wave fluctuating part of
the total fluctuation stress (Einaudi et al. 1984). It is a redistribution term (Rutgersson & Sullivan
2005) that has been usually neglected in previous studies.
Finally, an equation for the balance of the turbulent kinetic energy can be obtained via

multiplying the momentum equation for the background turbulence and multiplying by the
turbulent velocity and averaging as,

�4′

�C
=

1
ℎ

m

mb 9

(
− 1
d

ℎ

ℎ ( 9)
?′* ′

9
− ℎ

ℎ ( 9)
4′* ′

9
+ ℎ

ℎ ( 9)
2a* ′

8
(′
8 9

)
−2a(′

8 9
(′
8 9
−* ′

8
* ′
9
(̄8 9

− 〈* ′
8
* ′
9
〉(̃8 9 −

*̃ 9

ℎ ( 9)

m〈4′〉
mb 9

(3.17)

where 4′ =* ′
8
* ′
8
/2 is the turbulent kinetic energy per unit mass. Similarly to the mean and wave

kinetic energy budgets, the three first terms on the right-hand side of equation (3.17) represent
the transport of the turbulent kinetic energy within the flow. They are the pressure transport,
the turbulence transport, and viscous diffusion terms, respectively. The fourth term represents
the viscous dissipation due to the turbulent motion. The fifth term is the shear production term
which describes exchanges between the mean shear and turbulence. This term appears as an
energy source term in the mean kinetic energy equation (3.14), but with the opposite sign. The
sixth term is the turbulence-wave interaction term (e.g., Rutgersson & Sullivan 2005; Davis &
Monismith 2011) describing the turbulent energy production by the waves through the action of
the wave-induced turbulent stresses (Reynolds & Hussain 1972; Cheung & Street 1988). This
term too is found in the wave kinetic energy equation but with the opposite sign. It is also noticed
that 〈* ′

8
* ′
9
〉(̃8 9 = Ã8 9 (̃8 9 . The last term is the advection of turbulent kinetic energy by waves (e.g.,

Rutgersson & Sullivan 2005; Tsai et al. 2015) and can be expressed as (see, for example, Finnigan
& Einaudi 1981),

*̃ 9

ℎ ( 9)

m〈4′〉
mb 9

=
1
ℎ

m

mb 9

(
ℎ

ℎ ( 9)

1
2
Ã88*̃ 9

)
(3.18)

The last two terms on the right-hand side of equation (3.17) describe the interactions betweenwave
and turbulent fields and only appear in a triple-decomposed turbulent kinetic energy equation. The
* ′
8
* ′
9
(̄8 9 , *̃8*̃ 9 (̄8 9 , and Ã8 9 (̃8 9 terms are present in equations (3.14), (3.15), and (3.17), and clearly

denote the interaction among the mean, wave, and turbulent fields. Finally, in obtaining equations
(3.14) through (3.18), we note that the doubly contracted product of a symmetric tensor with
another tensor is equal to the doubly contracted product of the first tensor with the symmetric
part of the second tensor (Kundu & Cohen 2002) (because the doubly contracted product of
any symmetric tensor with an asymmetric tensor is zero (Boyer & Fabrie 2012)). Therefore, for
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example in equation (3.14), �̄turb : S̄ = �̄turb : ∇U and �̄wave : S̄ = �̄wave : ∇U where �̄turb is the
turbulent stress tensor and �̄wave is the wave stress tensor.

4. Boundary layer scaling
The governing equations of motion, developed in the preceding sections, can be considerably

simplified assuming boundary-layer type flows in which the vertical length scale of the motion
is small compared to the horizontal length scale. Thus, we are further considering the flow over
surface waves wherein the wavelength of the disturbance is large compared to the wave amplitude,
i.e. 0: � 1. A non-dimensionalization of the problem described by equations (2.14) to (2.16)
is then performed to obtain the reduced form of the equations through identifying the small
parameters, after which the resulting equations are made specific for surface waves. To this end,
a unified scaling was developed by allowing the vertical scales to be different from horizontal
scales. Accordingly, the following set of dimensionless variables, denoted by stars, are introduced,

b∗1 = :b1, b∗2 = :b2, b∗3 =
b3

0
(4.1)

*∗1 =
*1

*10
, *∗2 =

*2

*10
, *∗3 =

*3

0:*10
(4.2)

?∗ =
?

d*2
10

(4.3)

C∗ =*10:C (4.4)
where 0 is the wave amplitude, : is the wavenumber, 0: is the wave slope, and *10 is the wind
speed measured at 10-m height. It can be noted here that time is non-dimensionalized using the
peak frequency as,

C∗ = lC
*10

2

where 2 is the phase velocity and *10/2 is the inverse of wave age. By substituting the
dimensionless variables into the governing equations of an orthogonal curvilinear coordinate
system, the resulting non-dimensional equations can be expressed for the continuity,

1
ℎ

m

mb∗1

(
ℎ

ℎ1
*∗1

)
+ 1
ℎ

m

mb∗2

(
ℎ

ℎ2
*∗2

)
+ 1
ℎ

m

mb∗3

(
ℎ

ℎ3
*∗3

)
= 0 (4.5)

and momentum equations,

m*∗1
mC∗
+
*∗1
ℎ1

mD∗1
mb∗1
+
*∗2
ℎ2

m*∗1
mb∗2
+
*∗3
ℎ3

m*∗1
mb∗3
+*∗1*

∗
2^
∗
12 +*

∗
1*
∗
3^
∗
13−*

∗
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∗
2^
∗
21− ε

2*∗3*
∗
3^
∗
31

= − 1
ℎ1

m?∗

mb∗1
+ 1
'4

[
1
ℎ

m

mb∗1

(
ℎ

ℎ1
g∗11

)
+ 1
ℎ

m

mb∗2

(
ℎ

ℎ2
g∗12

)
+ 1
ε2

1
ℎ

m

mb∗3

(
ℎ

ℎ3

ℎ1

ℎ3

m

mb∗3

(
*∗1
ℎ1

))
+ 1
ℎ

m

mb∗3

(
ℎ

ℎ3

ℎ3

ℎ1

m

mb∗1

(
*∗3
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))
+g∗12^

∗
12 +

1
ε2
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mb∗3

(
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)
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ℎ3
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m
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(
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)
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∗
22^
∗
21− g

∗
33^
∗
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]
(4.6)
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m*∗2
mC∗
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ℎ
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]
(4.7)
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(4.8)

where Y = 0: is the wave slope and '4 =*10/a: is the wave Reynolds number based on the wind
speed at 10-m height. The wave Reynolds number is related to the wave roughness Reynolds
numbers, first introduced by Zhao & Toba (2001), through,

'4 =
'4�

4�1/2
3
0:

in which �3 is the air-sea drag coefficient and '4� = D∗�/a is the wave roughness Reynolds
number where D∗ is the friction velocity and � = 40 is proportional to the significant wave height.
A non-dimensionalized equation for the kinetic energy budget can be similarly derived. It is not
presented here for the sake of brevity as it leads to a long and tedious derivation. Choosing a
vertical length scale small compared to the horizontal length scale (0: � 1) implies that the range
of validity of the boundary layer equations is limited to :b3 ≈ O (0:), i.e. approximately within
a wave height of the surface. Wave-coherent motions are known to penetrate the airflow up to
heights on the order of the wavelength rather than the wave height; the coordinate transformations,
just like wave-induced motion, do indeed show an exp (−:b3) dependency. Instead, the boundary
layer scaling offered here is intended to be utilized to evaluate, for example, the scale of high
order terms such as Reynolds and wave stresses compared to viscous stresses. In fact, although
the viscous stress in the airflow over wind-generated waves has been the topic of many studies
over the past decades (e.g., Longuet-Higgins 1969; Hsu & Hsu 1983; Banner 1990; Banner &
Peirson 1998; Veron et al. 2007; Buckley & Veron 2016), it has just recently been shown that the
contribution of the viscous stress to the total air-water momentum flux is not negligible, at least
in low wind speeds (Grare et al. 2013; Buckley & Veron 2017). Therefore, in order to retain the
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viscous effects in the boundary layer equations, the largest viscous term is required to be of the
same order of magnitude as the inertia terms, i.e. 1/'4 must be of the order of magnitude of ε2.
In order to pursue the order of magnitude analysis, it is also necessary to determine the order

of magnitude of scale factors and curvature parameters in equations (4.5) to (4.8) and the kinetic
energy budget equation. To this end, the specifics of the coordinate transformation need to be
prescribed.
Following Benjamin (1959), we adopt an orthogonal wave-following coordinate system in the

frame of reference moving with the wave,

b1 = G1− 8048 (:1G1+:2G2)4−:G3

b2 = G2− 8048 (:1G1+:2G2)4−:G3

b3 = G3− 048 (:1G1+:2G2)4−:G3

(4.9)

where (b1, b2, b3) are wave-following coordinates, (G1, G2, G3) are rectangular coordinates, :1 is
the wavenumber in streamwise direction, :2 is wavenumber in the lateral direction, and : = |k | is
the wavenumber. The actual wave profile is, to the first order in 0: , given by b3 = 0. This type of
coordinate transformation is thoroughly used in the literature (e.g., Belcher & Hunt 1993; Belcher
et al. 1993; Sullivan et al. 2000; Tseluiko & Kalliadasis 2011; Náraigh et al. 2011) as it permits
a linear analysis for small-slope waves. Considering 0:1 ∼ 0:2 ∼ 0: are of the same order, say ε,
and retaining first-order terms, the coordinate differential can be expressed as,
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mb1
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mb2
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mb3

mG2

mb1

mG2

mb2

mG2

mb3

mG3

mb1
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mb3


≈


1− Y48i4−: b3 −Y48i4−: b3 −8Y48i4−: b3

−Y48i4−: b3 1− Y48i4−: b3 −8Y48i4−: b3

8Y48i4−: b3 8Y48i4−: b3 1− Y48i4−: b3

 +O
(
ε2) (4.10)

where i = (:1b1 + :2b2). Consequently, the scale factors, introduced in equations (2.6), are of the
order of,

ℎ8 ≈ 1+O (ε) (4.11)
The order of magnitude of dimensionless curvature parameters (2.13) can be further estimated,

K∗ =



1
ℎ1

1
ℎ1

mℎ1

mb∗1

1
ℎ1

1
ℎ2

mℎ1

mb∗2

1
ℎ1

1
ℎ3

mℎ1

mb∗3
1
ℎ1

1
ℎ2

mℎ2

mb∗1

1
ℎ2

1
ℎ2

mℎ2

mb∗2

1
ℎ2

1
ℎ3

mℎ2

mb∗3
1
ℎ1

1
ℎ3

mℎ3

mb∗1

1
ℎ2

1
ℎ3

mℎ3

mb∗2

1
ℎ3

1
ℎ3

mℎ3

mb∗3


≈


−28Y48i∗4−Yb

∗
3 +O

(
ε2) −28Y48i∗4−Yb

∗
3 +O

(
ε2) 2Y248i

∗
4−Yb

∗
3 +O

(
ε3)

−28Y48i∗4−Yb
∗
3 +O

(
ε2) −28Y48i∗4−Yb

∗
3 +O

(
ε2) 2Y248i

∗
4−Yb

∗
3 +O

(
ε3)

−28Y48i∗4−Yb
∗
3 +O

(
ε2) −28Y48i∗4−Yb

∗
3 +O

(
ε2) 2Y248i

∗
4−Yb

∗
3 +O

(
ε3)



(4.12)

where i∗ =
(
b∗1 + b

∗
2
)
. Thus ^∗

83 ∼ O
(
ε2) and all other dimensionless curvature parameters are of

order O (ε). The order of magnitude analysis can now be thoroughly established for the terms
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involving the scale factor and curvature parameter. The details of estimating the order of scale
factors and their derivatives can be found in Tseluiko & Kalliadasis (2011) and Náraigh et al.
(2011).
We note here that the transformation outlined above (equation 4.9) is valid for monochromatic

waves. In the case of windwaves, however, multi-modal transformations are generally utilized. For
example, this was done in the work of Sullivan et al. (2014, 2018) for numerical simulations and
in the study by Buckley & Veron (2016) for experimental studies. Extending the transformation
(4.9) to a summation of multiple Fourier modes of amplitude 0= and wavenumber := leads to
ℎ8 ≈ 1+O(∑0=:=). Because of the specifics of the spectral shape for wind waves (i.e. :−5/2 to
:−3 above the wave peak in the equilibrium and saturation ranges), ℎ8 ≈ 1+O(0?: ?) where 0?
and : ? are respectively the peak amplitude and wavenumber.
We are now in a position to complete an order ofmagnitude analysis for the governing equations.

Neglecting all terms with the order of magnitude of O
(
ε2) and higher yields the governing

equations for the flow over wind-generated surface waves with modest slopes. Therefore, the
governing equations in terms of dimensional variables are reduced to the following forms for
continuity equation,

1
ℎ

m

mb1

(
ℎ

ℎ1
*1

)
+ 1
ℎ

m

mb2

(
ℎ

ℎ2
*2

)
+ 1
ℎ3

m*3

mb3
= 0 (4.13)

momentum equations,

m*1

mC
+ *1

ℎ1

m*1

mb1
+ *2

ℎ2

m*1

mb2
+ *3

ℎ3

m*1

mb3
+ (*1*2^12−*2*2^21)

= − 1
d

1
ℎ1

m?

mb1
+ a 1

ℎ3

1
ℎ3

m

mb3

(
m*1

mb3

) (4.14)

m*2

mC
+ *1

ℎ1

m*2

mb1
+ *2

ℎ2

m*2

mb2
+ *3

ℎ3

m*2

mb3
+ (*2*1^21−*1*1^12)

= − 1
d

1
ℎ2

m?

mb2
+ a 1

ℎ3

1
ℎ3

m

mb3

(
m*2

mb3

) (4.15)

1
d

1
ℎ3

m?

mb3
= 0 (4.16)

and kinetic energy equation,

m4

mC
+ *8
ℎ (8)

m4

mb8
= − 1

d

*8

ℎ (8)

m?

mb8
+ a

ℎ3ℎ3

[
*1

m

mb3

(
m*1

mb3

)
+*2

m

mb3

(
m*2

mb3

)]
(4.17)

In which,

4 =
1
2
*1*1 +

1
2
*2*2

is the kinetic energy. We note here that equations (4.14) through (4.17) reduce to the conventional
boundary layer equations in the rectangular coordinates at order O (1). These equations can be
compared with the viscous boundary-layer equations over a solid curved surface derived by, for
example, Cebeci et al. (1976), Degani & Walker (1993), and Cebeci & Cousteix (2005).
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4.1. Triple decomposition
The boundary layer equations above can also be decomposed into mean, wave-induced, and
turbulent components by using the triple decomposition technique introduced in section 3.
Before proceeding with the triple decomposition of continuity, momentum, and energy equations,
however, we need to introduce a new set of dimensionless variables since employing the triple
decomposition technique leads to the double correlation of wave and turbulent velocities including
the turbulent and wave stresses. Experiments (e.g., Buckley & Veron 2017, 2019) indicate that,
across the boundary layer, themean velocity component in the vertical direction can be assumed to
be smaller than the streamwise and lateral mean velocity components, while the wave-induced and
turbulent velocities are presumably all of the same order of magnitude and much smaller than the
horizontal mean velocities. The triple decomposed equations will be then non-dimensionalized,
very much in the same manner as before, but using the following dimensionless variables,

b∗1 = :b1, b∗2 = :b2, b∗3 =
b3

0
(4.18)

*
∗
1 =

*1

*10
, *

∗
2 =

*2

*10
, *

∗
3 =

*3

0:*10
(4.19)

*̃∗1 =
*̃1

0:*10
, *̃∗2 =

*̃2

0:*10
, *̃∗3 =

*̃3

0:*10
(4.20)

* ′∗1 =
* ′1

0:*10
, * ′∗2 =

* ′2
0:*10

, * ′∗3 =
* ′3

0:*10
(4.21)

?̄∗ =
?̄

d*2
10
, ?̃∗ =

?̃

d*2
100:

, ?′∗ =
?′

d*2
100:

(4.22)

C∗ =*10:C (4.23)
The continuity equations for the mean, wave, and turbulent flow fields can be readily obtained

by substituting the decomposed velocities into the continuity equation (4.13) and then applying
the ensemble- and phase-average operators,

1
ℎ

m

mb1

(
ℎ

ℎ1
*1

)
+ 1
ℎ

m

mb2

(
ℎ

ℎ2
*2

)
+ 1
ℎ3

m*3

mb3
= 0 (4.24)

1
ℎ

m

mb1

(
ℎ

ℎ1
*̃1

)
+ 1
ℎ

m

mb2

(
ℎ

ℎ2
*̃2

)
+ 1
ℎ3

m*̃3

mb3
= 0 (4.25)

1
ℎ

m

mb1

(
ℎ

ℎ1
* ′1

)
+ 1
ℎ

m

mb2

(
ℎ

ℎ2
* ′2

)
+ 1
ℎ3

m* ′3
mb3

= 0 (4.26)

Deriving the decomposed momentum and energy budget equations for the boundary layer,
however, requires more effort. Following substituting the decomposed fields into the momentum
equations (4.14) and (4.15) and applying the ensemble and phase averaging operators, it is
necessary to perform the order ofmagnitude analysis using the dimensionless variables introduced
in equations (4.18) to (4.23) due to the new double-velocity correlation expressions. The details,
however, is eliminated to keep the brevity. Neglecting all terms with the order of magnitude of
O

(
ε2) and higher renders the b3 equations trivial. The mean momentum equations in b1 and b2

directions can be expressed as,
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m*1

mC
+
* 9

ℎ ( 9)

m*1

mb 9
+

(
*1*2^12−*2*2^21

)
+ 1
ℎ3

m

mb3

(
*̃1*̃3

)
+ 1
ℎ3

m

mb3

(
* ′1*

′
3

)
= − 1

d

1
ℎ1

m?

mb1
+ a 1

ℎ3

1
ℎ3

m

mb3

(
m*1

mb3

) (4.27)

m*2

mC
+
* 9

ℎ ( 9)

m*2

mb 9
+

(
*2*1^21−*1*1^12

)
+ 1
ℎ3

m

mb3

(
*̃2*̃3

)
+ 1
ℎ3

m

mb3

(
* ′2*

′
3

)
= − 1

d

1
ℎ2

m?

mb2
+ a 1

ℎ3

1
ℎ3

m

mb3

(
m*2

mb3

) (4.28)

Applying the phase-averaged operator to the decomposed wave-induced momentum equations
(4.14) and (4.15), subtracting the mean momentum equations, and neglecting terms of order
O

(
ε2) , the wave momentum equations can be written as,

m*̃1

mC
+
*̃ 9

ℎ ( 9)

m*1

mb 9
+

(
*1*̃2^12−*2*̃2^21

)
+
* 9

ℎ ( 9)

m*̃1

mb 9
+

(
*̃1*2^12−*̃2*2^21

)
+ 1
ℎ3

m'̃13

mb3
+ 1
ℎ3

mÃ13

mb3
= − 1

d
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m ?̃

mb1
+ a 1

ℎ3

1
ℎ3

m

mb3

(
m*̃1

mb3

) (4.29)

m*̃2
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+
*̃ 9

ℎ ( 9)
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mb 9
+

(
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)
+
* 9

ℎ ( 9)

m*̃2

mb 9
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d

1
ℎ2

m ?̃

mb2
+ a 1

ℎ3

1
ℎ3

m

mb3

(
m*̃2

mb3

) (4.30)

In these equations Ã8 9 = 〈* ′8* ′9〉 −* ′8* ′9 and '̃8 9 = 〈*̃8*̃ 9〉 − *̃8*̃ 9 . Finally, we are deriving the
momentum equation for the background turbulence in the boundary layer by subtracting the mean
and wave momentum equations from the decomposed momentum equations and neglecting terms
of order O

(
ε2) . Consequently, the momentum equations for the turbulent field can be written in

b1 and b2 directions as,

m* ′1
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+
* ′
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1
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m
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(
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mb3

) (4.31)
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m* ′2
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In addition, the mean viscous stress, which appears in equation (4.27), can be shown to reduce to,

g13 = a
1
ℎ3

m*1

mb3
≈ a m*1

mb3

(
1+O

(
ε
) )
+O

(
ε2)

which to the leading order is,

g13 ≈ a
m*1

mb3
(4.33)

An equation for the mean, wave, and turbulent kinetic energy budgets for the flow in the
boundary layer can be also obtained by multiplying the mean, wave, and turbulent momentum
equations by the mean, wave-induced and turbulent velocities, respectively, and then successively
applying the phase- and ensemble-averaging operators,
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(4.36)

where,

)8 9 = *̃8*̃ 9 +* ′8* ′9
is the total fluctuation stress tensor, and,

4̄ =
1
2
*1*1 +

1
2
*2*2

4̃ =
1
2
*̃1*̃1 +

1
2
*̃2*̃2 +

1
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*̃3*̃3

4′ =
1
2
* ′1*

′
1 +

1
2
* ′2*

′
2 +

1
2
* ′3*

′
3

are the mean, wave-induced, and turbulent kinetic energy, respectively. Moreover, �/�C is the
mean material derivative defined in equation (3.8). The readers should note that deriving the
triple-decomposed equations, particularly energy budget equations, in an orthogonal curvilinear
coordinate system describing the fluid motion in the boundary layer is an exercise that, while
straightforward, is quite tedious. The details of the derivation are omitted here for the sake of
brevity but are available upon request.

4.2. Validation of scale analysis
The equations for the mean, wave-induced, and turbulent flows in the boundary layer adjacent to
surface waves with modest slopes (equations 4.27 to 4.32) were derived by assuming that terms
O

(
ε2) and higher are negligible. In this section, we assess some of these assumptions using

the experimental laboratory data of Buckley & Veron (2016, 2017) who have measured two-
dimensional velocity fields in the airflow above moving surface waves for different wind-wave
conditions with wind speeds ranging from U10 = 0.89 m s−1 to U10 = 16.59 m s−1. To this end, the
measured velocity fields were projected and transformed into the curvilinear coordinate system,
then averaged in the b-direction. A detailed analysis of these experimental data is presented in
the companion paper (Yousefi et al. 2019). For the mean momentum equation in b1−direction
(equation 4.27), for example, the complete dimensionless equation (in 2D) is,
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∗
33^
∗
31

]

(4.37)

in which,
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It is found from equation (4.37) that, for example, the derivative of the wave-induced stress with
respect to the vertical direction (term II in equation 4.37) is an order of magnitude larger than the
derivative of the horizontal wave-induced variance in the streamwise direction (term I in equation
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Figure 3. Vertical profiles of the streamwise divergence of horizontal wave-induced variance (term I),
vertical divergence of wave-induced stress (term II), and additional wave-induced stresses (term III) for
experiments with a wind speed of (a) U10 = 2.25 m s−1, (b) U10 = 5.08 m s−1, and (c) U10 = 9.57 m s−1

corresponding to a wave slope of (a) ε = 0.07, (b) ε = 0.13, and (c) ε = 0.19, respectively. Terms I, II, and
III are defined as ℎ−1m
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additional wave-induced stresses term is appeared in the mean momentum equation due to the streamline
curvature, which is asymptotically zero and hence negligible for the flow over surface waves with a small
slope.

4.37). That means the streamwise divergence of the horizontal wave-induced variance and the
vertical divergence of the wave-induced stress are, respectively,

I =
1
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m

mb∗1

(
ℎ

ℎ1
*̃∗1*̃

∗
1

)
≈$

(
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while the additional wave stresses which appeared in the mean momentum equation due to the
streamline curvature (term III in equation 4.37) are of the order of,

III = *̃∗1*̃
∗
3^
∗
13−*̃∗3*̃

∗
3^
∗
31 ≈$

(
Y3

)
(4.43)

where ^∗13 and ^∗31 are dimensionless curvature parameters. The terms represented in equations
(4.41) to (4.43) are shown in figure 3 for experiments with the wind speed of U10 = 2.25 m s−1,
5.08 m s−1, and 9.57 m s−1 corresponding to a wave slope of 0.07, 0.13, and 0.19, respectively.
From this figure, it can be observed that, of these three terms, the derivative of the wave stress
by b3 (II) exerts a significant influence on the momentum flux compared to the other terms. This
is consistent with the analysis above. The absolute extremum of the wave stress derivative in the
vertical direction happens very close to the surface and increases with the wave slope from 0.082
for ε = 0.07 to 0.159 for ε = 0.19. We also note that, consistent with the range of validity of the
boundary layer equations, the scaling between terms I, II, and III, holds near the surface where
: ?Z � 1.
In order to provide a detailed comparison of the order ofmagnitude of the streamwise divergence
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Figure 4. Vertical profiles of the (a) streamwise divergence of horizontal wave-induced variance (term I),
(b) vertical divergence of wave-induced stress (term II), and (c) additional wave-induced stresses (term III)
for the experiment with a wind speed of U10 = 5.08 m s−1 corresponding to a wave slope of ε = 0.13. Terms I,
II, and III are defined as ℎ−1m
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of horizontal wave-induced variance (term I), vertical divergence of wave-induced stress (term
II), and additional wave-induced stresses (term III), the vertical profiles of these terms are further
presented in figure 4 for the wind-wave condition of U10 = 5.08 m s−1 corresponding to a wave
slope of ε = 0.13. In this experiment, term I is of the order of 0.008 (∼ ε2), term II is of the
order of 0.16 (∼ ε), and term III is of the order of 0.0014 (∼ ε3). The terms with orders of
magnitude larger than ε may not be fully resolved, in particular, for higher wind speeds due to the
filtering processes in which a greater number of velocity fields contaminated by spray and other
light reflections from the surface and thus excluded from the averaging process. The streamwise
derivative of the horizontal wave-induced variance, and especially, the additional wave-induced
stresses are almost zero everywhere except near the surface where the curvature effects are strong.
They fall to zero from their maxima at a distance of nearly : ?Z = 0.075 and : ?Z = 0.05 for the
term I and the term III, respectively.
Similarly, the streamwise divergence of the horizontal turbulent variance (term IV in equation

4.37), the vertical divergence of the turbulent stress (term V in equation 4.37), and the additional
turbulent stresses (term VI in equation 4.37) are, respectively, of (leading) order of,
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The laboratory measurements of these terms are also consistent with the order of magnitude
analysis; the divergence of the horizontal turbulent variance in the streamwise direction and the
additional turbulent stresses are respectively one and two orders of magnitude smaller compared
to the vertical divergence of the turbulent stress (not shown here to maintain brevity). Evidently,
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the wave and turbulent stresses that appear because of curvature in the coordinate system, are
asymptotically zero and hence negligible for the flow over surface waves with a small slope.

5. Conclusions
In the current work, the dynamical governing equations of three-dimensional fluid motion,

i.e. the continuity, momentum, and kinetic energy equations, have been transformed into the
orthogonal curvilinear coordinate system in such a way that flow direction and coordinate
directions coincide. These equations are then separated into themean,wave-induced, and turbulent
components by employing the triple decomposition technique. The complete transformation
of governing equations involves curvature parameters, or equivalently, the local radius of
curvature and their higher order derivatives. The transformed equations therefore involve explicit
extra geometric terms, for example, the additional production, advection, and diffusion terms
representing the effects of streamline curvature on the structure of fluid flow including the
acceleration of the mean flow. These formulations are valid down to the surface and naturally
incorporate the curvature effects. Furthermore, the precise expressions for the mean, wave-
induced, and turbulent viscous tresses are explicitly spelled out.
We also simplified considerably the continuity, momentum, and kinetic energy equations for

the boundary-layer type flows based on the assumption that the vertical length scale of the motion
is small compared to the horizontal length scale. Considering the flow over periodic surface
waves wherein the wavelength of the disturbance is large compared to the wave amplitude,
the order of magnitude analysis is then performed to derive the boundary layer equations in
the orthogonal wave-following curvilinear coordinates. The boundary layer equations are also
decomposed into the mean, wave-induced, and turbulent components. Implementing this triple
decomposition leads to the appearance of double velocity correlations of wave and turbulent
velocities that requires to be treated with the assumption that wave-induced and turbulent velocity
components are all of the same order.

This research was supported by the National Science Foundation (NSF) through grant numbers
of OCE-1458977 and OCE-1634051.

Appendix A.
The momentum equation in orthogonal curvilinear coordinates, described in equation (2.15),

can be alternatively represented in terms of velocity and vorticity for an incompressible fluid using
the compact notation introduced in section 2. The formulation of the Navier-Stokes equations in
terms of velocity and vorticity is an interesting alternative form for numerical studies (e.g., Nikitin
et al. 2009; Nikitin 2011). Using the summation notation introduced in section 2.1, themomentum
equation in an orthogonal curvilinear coordinate system can be expressed in velocity-vorticity
formulation as,

m*8

mC
+
ℎ (8)ℎ ( 9)

ℎ
2Ω8 9* 9 = −

1
d

1
ℎ (8)
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mb8
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(
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ℎ (8)
ℎ

mΩ8 9
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where the components of the vorticity tensor 
 can be expressed by,

Ω8 9 = −
1
2
Y8 9:ℎ (:)l: (A 2)

in which Y8 9: is the Levi-Civita permutation symbol. In order to complete the velocity-vorticity
formulations, we further express the vorticity transport equation as,
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Summary
The development of the governing equations for fluid flow in a surface-following coordinate system is essential to
investigate the fluid flow near an interface deformed by propagating waves. In this paper, the governing equations
of fluid flow, including conservation of mass, momentum and energy balance, are derived in an orthogonal
curvilinear coordinate system relevant to surface water waves. All equations are further decomposed to extract
mean, wave-induced and turbulent components. The complete transformed equations include explicit extra
geometric terms. For example, turbulent stress and production terms include the effects of coordinate curvature on
the structure of fluid flow. Furthermore, the governing equations of motion were further simplified by considering
the flow over periodic quasi-linear surface waves wherein the wavelength of the disturbance is large compared to
the wave amplitude. The quasi-linear analysis is employed to express the boundary layer equations in the orthogonal
wave-following curvilinear coordinates with the corresponding decomposed equations for the mean, wave and
turbulent fields. Finally, the vorticity equations are also derived in the orthogonal curvilinear coordinates in order to
express the corresponding velocity–vorticity formulations. The equations developed in this paper proved to be useful
in the analysis and interpretation of experimental data of fluid flow over wind-generated surface waves.
Experimental results are presented in a companion paper.
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