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Integrated Direct and Indirect Flood Risk Modeling:
Development and Sensitivity Analysis

E. E. Koks,1,∗ M. Bočkarjova,2 H. de Moel,1 and J. C. J. H. Aerts1

In this article, we propose an integrated direct and indirect flood risk model for small- and
large-scale flood events, allowing for dynamic modeling of total economic losses from a flood
event to a full economic recovery. A novel approach is taken that translates direct losses of
both capital and labor into production losses using the Cobb-Douglas production function,
aiming at improved consistency in loss accounting. The recovery of the economy is modeled
using a hybrid input-output model and applied to the port region of Rotterdam, using six
different flood events (1/10 up to 1/10,000). This procedure allows gaining a better insight
regarding the consequences of both high- and low-probability floods. The results show that
in terms of expected annual damage, direct losses remain more substantial relative to the
indirect losses (approximately 50% larger), but for low-probability events the indirect losses
outweigh the direct losses. Furthermore, we explored parameter uncertainty using a global
sensitivity analysis, and varied critical assumptions in the modeling framework related to,
among others, flood duration and labor recovery, using a scenario approach. Our find-
ings have two important implications for disaster modelers and practitioners. First, high-
probability events are qualitatively different from low-probability events in terms of the scale
of damages and full recovery period. Second, there are substantial differences in parameter
influence between high-probability and low-probability flood modeling. These findings sug-
gest that a detailed approach is required when assessing the flood risk for a specific region.
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1. INTRODUCTION

Numerous studies in the area of natural disasters
have developed approaches to model and estimate
consequences of flooding. Many of these studies,
often originating from the engineering community,
address primarily the direct losses (i.e., destruction
of physical and human capital) of flooding based
on detailed flood simulations.(1–4) The estimation
of indirect losses (i.e., production losses due to
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interruption of economic processes in and outside
the affected area), on the other hand, has mainly
been the domain of the economic community, using
models such as input-output (I-O), computable
general equilibrium (CGE), or hybrid models based
on a specific disaster event.(5–9) A few studies have
proposed a more integrative approach for the calcu-
lation of both direct and indirect flood damage. For
instance, Jonkman et al.(10) proposed an integrated
framework for the combination of direct and indirect
losses, and FEMA(11) developed two modules within
the HAZUS-FLOOD model to assess direct- and
indirect losses in the United States. However, in our
opinion, an integrative model with the capacity to
dynamically incorporate various elements of flood
damage assessment, such as the flood hazard, the
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direct damages, and the total economic effects, is
still lacking. In particular, existing models often fall
short of systematic estimation of direct and indirect
losses and provision of a coupling between the two.
In this study, we attempt at closing this gap.

In this article, we propose a framework for a
dynamically integrated direct and indirect flood risk
model and operationalize it for the Rotterdam (the
Netherlands) harbor area. The framework consists of
multiple steps and includes elements salient to inte-
grative loss estimation. First, based on flood maps,
a direct loss assessment is conducted in the harbor
area, with a detailed differentiation between various
industrial sectors. Second, we show how direct losses
in both capital and labor can be translated into the
loss in production per sector in a consistent man-
ner by making use of a Cobb-Douglas production
function. In this regard, labor losses are of particular
importance for large (low-probability) floods, which
may involve human victims. Third, we model pro-
duction losses for the time period when the area is
still flooded and therefore unable to begin recovery.
Fourth, the recovery of production after the shocks
is modeled using a hybrid I-O model to estimate
the short-term economic effects, using different sim-
ulated flood events. Ultimately, the model outcome
is loss estimation expressed in terms of expected an-
nual damage (EAD). This model is a ready-to-use
tool that can assist both researchers and practition-
ers in flood vulnerability analysis and well-informed
decision making.

Furthermore, we perform an extensive sensitiv-
ity analysis (SA) of the model. In particular, we ex-
plore parameter uncertainty using a global SA. Next
to that, we vary critical model parameters related,
among others, to labor recovery and flood dura-
tion, using a scenario approach. This SA provides
critical insights for the methodological and empir-
ical domains of damage modeling and exemplifies
the uncertainties intrinsic to indirect damage model-
ing. Moreover, the sensitivity results can be used to
compare existing indirect damage models and their
outcomes, assist in modeling practice such as war-
ranting of model assumptions, and direct future re-
search needs.

The remainder of this article proceeds as fol-
lows. In Section 2, an extensive explanation is given
of the proposed flood risk model and in Section 3,
an explanation of the SA is provided. In Section 4,
an overview is provided of the used data. In Sec-
tion 5, we present and discuss the results of the direct
and indirect flood risk estimates, and the associated

uncertainty analysis (UA) and sensitivity analysis
(SA). In Section 6, final conclusions are drawn.

2. FLOOD RISK MODEL

Flood risk can be defined as a function of the
hazard’s probability, the exposure, and the vulnera-
bility of the exposed socioeconomic system(12,13) and
in engineering literature is often expressed in terms
of EAD. The EAD is defined as the sum of the ex-
pected value of damages that might be caused by
a set of flood events, or as the integral below the
probability-loss curve.(14) While being an insightful
concept, EAD is rarely met in economic literature,
where often analysis of a specific disaster event (such
as the Kobe earthquake(15) or Hurricane Katrina(7))
or some “typical” disaster event is presented. In this
article, we shall use the concept of EAD and apply it
to an integrative flood risk model (this section) and
consider a spectrum of flood events in the Nether-
lands to test the model (Section 5).

In disaster modeling literature, a large variety
of definitions for both direct and indirect losses are
used.(6,16,17) To avoid ambiguity, we will provide def-
initions of direct and indirect losses as will be used
in this article in line with Bočkarjova et al.(18) Direct
losses will be considered as stock input losses and
indirect losses as flow output losses. In this respect,
stock input losses refer to material damages and
include the existing level of capital, facilities, and in-
ventories of products, whereas flow output losses re-
fer to outputs and services of stocks over time.

Direct losses are usually calculated with the
use of depth-damage functions.(10,19) Indirect losses,
on the other hand, require a different modeling
approach due to the interaction of multiple eco-
nomic actors that emerge in an economy at large.
The most commonly used and well-documented
approaches in economic disaster modeling are I-O
and CGE modeling.(20) Due to explicit represen-
tation of production technology and interindustry
dependencies, direct interpretability, and data avail-
ability, I-O models are well suited for assessing how
the effects of a (natural) disaster propagate into
the economy through intermediate consumption
and demand.(6,7,21) Standard I-O modes, however,
have a number of shortcomings. First, they often
overestimate the results due to linearity and the lack
of substitution possibilities within the production
system. Second, I-O models only assess the disaster
shock on the demand side of the economy, i.e.,
consider backward-linked losses. Third, I-O models
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have a lack of interdependence between price and
output and a lack of explicit resource constraints.(16)

Recently, however, a number of hybrid I-O models
have been presented(7,8,22) that address a number
of I-O disadvantages and, similar to CGE, allow
more flexibility. Besides, I-O-based models are
relatively easy to combine with models that contain,
for example, a more detailed description of the water
cycle, such as hydroeconomic models.(16) Finally, be-
cause the availability of I-O tables makes I-O-based
approaches readily usable, we shall use an I-O frame-
work and present a model that extends it, based on
Bočkarjova(23) and Hallegatte.(24) Besides, we test
the sensitivity of model results to uncertainty (see
Section 3). This helps to identify possible limitations
in the model and more detailed data needs, as well
as provide a basis for a more complete interpretation
of model results and the model assumptions.

Fig. 1 presents an overview of the method-
ological framework. In the first stage, a direct loss
assessment is conducted,(25) where we specifically
focus on the various industries of the study area.
Second, we show how direct losses in both capital
and labor can be translated into loss in production
per sector in a consistent manner by making use of a
Cobb-Douglas production function. This production
loss is used to calculate the imbalanced postdisaster
economic situation, by making use of the basic
equation (BE).(23) We note that we allow for a
prerecovery period for the duration of the flood.

The final step of the model is the recovery of the
economy and reconstruction of the area. This final
step is modeled by using an adapted hybrid I-O
model, based on the adaptive regional input-output
(ARIO) model.(7,24) Overall, the presented frame-
work requires only three inputs, making it widely
applicable: an inundation map, a land-use map, and
an I-O table.

2.1. Direct Loss Assessment

The most common methodology for direct
damage assessments is the use of depth-damage
functions.(26) This approach calculates damage us-
ing spatial information on land-use classes or build-
ing types (the exposure) and inundation depths (the
hazard). For each building type or land-use class, a
maximum value at risk (Dmax) and a depth-damage
function (α(h)) are assigned (Fig. 2). A depth-
damage function indicates what fraction of total
value at risk is damaged at different inundation
depths. In each cell, fraction (α) of total damage is
then determined for each building type and land-use
class based on the inundation depth (h) for a par-
ticular flood event. Obtained damages for all cells
are then aggregated to arrive at the total direct dam-
age of the flooded area (Ddir). Equation (1) presents
the formula for assessing this total direct damage,
where m is the number of land-use categories (l) and
n the number of cells (r) in the flooded area.(10) The

Fig. 1. Overview of the different components of the framework. The dark gray squared boxes are the inputs, the ellipses are the different
models, and the light gray squared boxes are the model outputs.
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Fig. 2. Examples of various depth-damage curves used in the di-
rect loss assessment.

maximum damages and depth-damage curves used in
this study are based on De Moel et al. (25) However, to
improve the precision of direct damage estimates, we
extend the approach of De Moel et al.,(25) where two
industrial classes are used, by distinguishing 16 dif-
ferent industrial classes in the harbor area, for which
the maximum damages and depth-damage curves are
based on Tebodin.(27,28) For a more elaborate expla-
nation of the direct loss assessment, please refer to
De Moel et al.(25)

Ddir =
m∑
l

n∑
r

α (hr ) Dmax
l , (1)

where Ddir is total direct damage in the area under
consideration, Dmax is value at risk for land- use cat-
egory i, αi(hr) is depth-damage function for land- use
category i, and hr is hydraulic characteristics (water
depth) of the flood in a particular cell r.

2.2. From Direct Losses to Production Losses

While in disaster modeling direct damages to
capital assets are often assumed to directly reflect
production losses, such a one-to-one transformation
is too raw. Although allowing a straightforward
proxy, such approaches however ignore the pro-
duction process that transforms various inputs and
production factors into the final products. Therefore,
to link estimates of direct flood damage in capital
and labor to the economic shock in this model,
we use a Cobb-Douglas production function.(29) A
standard Cobb-Douglas production function as in
Equation (2) translates the use of production factors

capital (K) and labor (L) to produce the amount of
final goods (Y) in each sector j. Furthermore, b is
the total factor productivity (a scaling parameter)
and α and β are output elasticities indicating by how
much final output would change if capital and labor
endowments change by one unit, respectively.

Yj = bj Kα
j Lβ

j . (2)

Within an I-O framework, labor and capital
belong to the value-added part of the table, and
together with intermediate inputs, they make up,
columnwise, the total production per sector (see
Table I). So, essentially, Equation (2) can tell
us the amount of value added if capital and la-
bor are known. This interpretation of the Cobb-
Douglas function becomes a useful tool in determin-
ing changes in value added (Yj in Equation (2)) when
changes in capital and labor become known. From
the direct loss estimation as described in Section 2.1,
direct damages per industry are available (Ddir in
Equation (1)), which we assume are losses of capital
goods. Furthermore, we assume that labor is evenly
distributed among the sectors, so that the share of in-
dustry flooded is approximated to a loss in labor per
sector. In future work, a model estimating the loss
of life such as Jonkman et al.(10) can be easily incor-
porated to refine the labor loss estimates as it uses an
inundation map as input requirement, similarly to the
direct loss module described above. Inserting loss of
capital and labor in Equation (2) will thus yield the
loss in value added as a result of flood.

We note that our approach addresses the issue
of underestimation of production losses that is often
signaled by disaster modelers(30) when translating di-
rect damages into the loss in value added. In this re-
gard, several steps are taken for this translation. First,
by accounting for the loss of both capital and labor
as described above; second, by calibrating industry-
specific elasticities (α and β) when translating direct
damages to production losses; and third, by adopt-
ing the assumption of constant returns to scale. We
will elaborate on the second and third steps below.
To reflect production processes within an economy
more precisely, we calibrate parameters α, β, and b
for each industrial sector based on the predisaster I-
O table, which is assumed to reflect markets in equi-
librium. Therefore, Y, K, and L are directly available
from the I-O table, where K is returns to capital, L
is labor costs or wages,(31) and Y is the total value
added of a specific sector j (see Table I).
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Table I. General Framework of an Input-Output Table

Processing Sectors (Purchases)

1 . . . j . . . n Final Demand Total Output

Processing sectors (sales) 1
. . .
i Z F xi

. . .
n

Payments sector Value added Kj K
Lj 0 L

Imports mj M
Total outlays xj X

Standard economic models of growth(32) assume
that production processes reveal decreasing returns
to scale, so that in equilibrium the “last” unit of
input (be it capital or labor) is the least produc-
tive compared to the “first” units of input. Alterna-
tively, we assume a Cobb-Douglas function with con-
stant returns to scale (i.e., α + β = 1). This assump-
tion allows representing an “average” productivity of
each unit of input throughout the production pro-
cess, which is the same for all production units. Be-
cause flood disasters affect different units of input
independently of their productivity, constant returns
to scale will treat all input units of labor and capital
to be equally productive, thus correcting for a pos-
sible underestimation of production losses. This as-
sumption will also apply during the recovery, where
constant returns to scale will treat production fac-
tors to be, on average, equally productive throughout
the entire recovery process (we shall return to this in
Section 5.3).

The following procedure is applied. As a first
step, we translate direct losses of capital and labor to
losses in value added using the Cobb-Douglas func-
tion, where �K is the remaining capital and �L is the
remaining labor:

�Yj = Yj −
[
bj (�Kα

j )
(
�Lβ

j

)]
. (3)

We note that this is a column-wise operation in
I-O terms. Next, losses in sectoral value added (�Yj)
are related to total outlays, i.e., they are redefined
in terms of reduced sectoral outlays, or a “shock.”
Assuming a stable relationship between the sectoral
value added (Yj) and total outlay (Xj), the economic
shock per sector (sj), can be obtained as shown in
Equation (4):

s j = Yj

Xj
∗ �Yj

Yj
. (4)

The shock si is thus defined as the inoperability
of a specific sector, which is the percentage that a
specific sector cannot fulfill of the as-planned level
of production.(33,34) Equation (4) shows that, effec-
tively, due to a fixed relationship between Yj and
Xj for each sector (which we will also assume to be
fixed for each sector during the recovery period due
to the same production function), changes associated
with losses of value added (�Yj) can be translated
into a measure of sector inoperability.(35) In other
words, this ratio describes how the outlay of a
particular sector is dependent upon the value
added.(36) We recall that an I-O table features
the balance between Xj (total outlays) and Xi

(total outputs) so that
∑

i=1..n Xi = ∑
j=1..n Xj

(see Table I), both of which represent to-
tal sectoral production. Therefore, in defining
the shock, column-wise changes in value added
(�Yj) can be related to row-wise changes in total
output (Xi). This makes it possible to rewrite sj’s
into sis. Consequently, row-wise sectoral shocks sis
can be expressed as an economy-wide inoperability
matrix, defined as σ (Equation (5)).

σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · ·
...

. . .

· · · 0

0
...

... 0
0 · · ·

. . .
...

· · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎛
⎜⎜⎝

s1

..

si

si+1

⎞
⎟⎟⎠ . (5)

Alternatively, a matrix of remaining production
capacity (1 − σ ) can be obtained as:
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1 − σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − s1 · · ·
...

. . .

· · · 0

0
...

... 0
0 · · ·

. . .
...

· · · 1 − si+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

2.3. Prerecovery Period

After the economic shock is defined, the next
step is to assess the production loss in the period di-
rectly after the flood. Floods in recent history (e.g.,
the floods in central Europe in 2002 and 2013) have
shown that it can take a long time before all the wa-
ter recedes. Thus, for the period of flood duration,
everyday routines are distorted, firms are not able to
produce, and reconstruction cannot begin. It is im-
portant to note that, due to the different types of
floods and different characteristics of areas prone to
flooding, assumptions about flood duration may vary
substantially across the areas, and may lead to a high
variability in model parameters related to flood du-
ration (as will be discussed in Sections 3 and 5). A
flood occurring in the outer dike areas is a short-lived
event compared, for instance, to a flood occurring in
a polder area, where it can take up to several months
before all the water is pumped out.(37)

A standard I-O model, as in Equation (7), de-
scribes a relation between final demand, F (consist-
ing of exports, stocks, the final demand of households
and governments), and total output (X) where A is
the matrix of interindustry inputs that are necessary
to produce goods to satisfy final demand.(38) In the
short run, proportions between interindustry inputs
are assumed to be stable, and represent therefore
prevailing interindustry technology:

X = AX + F. (7)

To reflect the state of an economy directly after
a shock and to obtain production loss in the postdis-
aster situation, we make use of the BE.(6) This BE
proposes that it is essential to postdisaster model-
ing to have an account of an economy directly af-
ter the shock. The main motivation for this is that an
economy affected by a major stress is out of equilib-
rium, i.e., established relations between sectors are
seriously disturbed and cannot function normally and
therefore cannot satisfy the needs of intermediate
sectoral demand as well as final demand. This state
is a starting point for recovery where an economic

system needs to find its new balances. We shall briefly
explain how a BE is derived.

For the derivation of a BE, a predisaster econ-
omy is first represented in terms of production inputs
(A), total output (vector X), final demand in terms
of real wages (matrix F/L), and labor force (scalar
L) that is distributed among the sectors (transposed
vector lʹ of sectoral labor intensities). The predis-
aster economy is in balance and is represented in
Equation (8):[

A F/L
l ′ 0

](
X
L

)
=
(

X
L

)
. (8)

Or simply rewritten into:

Mq = q. (9)

Next, we introduce a shock to the left-hand side
of the equation defined by σ (1 − σ ). as in Equa-
tion (5). The remaining part of a postcalamity system
can be then described as:

(1 − σ ) ∗ M ∗ q = t. (10)

Equation (10) is referred to as a BE, where
(1 − σ ) is the matrix of remaining sector capacities
(Equation (6)). The distinct feature of BE is that the
interim vector t is not a vector of total output, but a
mere row-wise sum of remaining assets, which, due to
disproportions in sectoral losses, do not yet make up
a working system (for an extensive explanation of the
BE, see Steenge and Bočkarjova(6) and Bočkarjova
et al.(18) Because part of inputs for some production
sectors cannot be delivered as a result of flood losses
incurred by suppliers, other inputs become partly re-
dundant in the production process, thus forcing the
sectors to reduce or even temporarily cease produc-
tion. Due to the fact that not all available resources
can be directly used in production (but perhaps can
be used as stock or export), the new total output for
a recovering system (say, a new vector Xnew) would
expectedly be lower than vector t (Xnew < t). Thus,
the BE as in Equation (10) contains the necessary
postcatastrophe information on the disproportions,
where disproportionality is defined in terms of a dis-
torted predisaster economic connection and inabil-
ity of total output to directly meet the final demand
needs. At this stage, vector t will be used as a start-
ing point for modeling postdisaster recovery in the
process of reaching a new equilibrium. As a base-
line case, we assume that interindustrial relations
and thus technological coefficients (matrix A) are not
changed after the shock and therefore remain similar
to the predisaster situation. Thus, the aim of recovery
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efforts is to achieve such levels of interindustrial
outputs that the system reaches the satisfaction of
predisaster level of final demand. We define the pre-
recovery losses (PRLs) per sector before the start of
recovery as:

PRLj = Y0
j − Ypd

j

365
∗ T f lood, (11)

where Tflood is the number of days the area cannot
recover yet, Yj

0 the sectoral value added in the pre-
disaster situation, and Yj

pd the sectoral value added
in the postdisaster situation. The parameter Tflood is
dependent on the location and type of area where the
flood occurs.

2.4. Recovery Period

After the water has receded and the area is ac-
cessible again, reconstruction of the area can be-
gin. For the recovery period, use is made of the
ARIO model.(7,24) In this article, we will use the lat-
est version of the ARIO model as a starting point,
as proposed in Hallegatte.(24) The ARIO model is
I-O based, modeling economic adjustments in re-
sponse to a natural disaster. The ARIO model con-
siders the regional economy consisting of households
and various industries that exchange, import, pro-
duce, and export goods and services. It accounts for
interactions between sectors through demand and
supply of consumption goods.(7) It allows account-
ing for the heterogeneity in goods and services within
sectors, for consequences of production bottlenecks,
and substitution possibilities on the recovery of total
output.(24) See Appendix A for an overview of the
most important modeling steps in the ARIO model,
and Hallegatte(7,24) for an extensive explanation of
the model. A starting point for the ARIO model is
the BE discussed in Section 2.4, which describes a
disrupted and imbalanced economy directly after a
disaster.

As the model is dependent on a large number
of parameters, assumptions have to be made for the
economic structure in the area under investigation.
These assumptions are based on expert knowledge
of the area(39) and disaster modeling literature.(24,40)

First, due to the large variation in sectors in the port
region of Rotterdam, we assume there is a high het-
erogeneity in goods and services between and within
sectors. Second, we assume a full labor recovery of
three months. Third, for the amount of inventory per
sector, we differentiate between three different types

of production modes:(40) anticipatory, where produc-
tion occurs in anticipation of future orders (e.g., agri-
culture and mining); responsive, where production
takes places after receipt of customer orders (e.g.,
construction and services industries and most man-
ufacturing industries); and just-in-time, where pro-
duction takes place and goods are delivered as the
order is placed (e.g., public utilities). For the antic-
ipatory sectors, we assume an inventory stock of 90
days, for responsive sectors an inventory stock of 60
days, and for just-in-time sectors an inventory stock
of 3 days. Other parameters settings are based on
Hallegatte.(24) See Table II for an overview of the
“reference” parameter settings.

Direct flood damages to capital of both indus-
tries and households are added to the final demand
in the I-O model, as we assume that the conse-
quences of the flood result in additional demands of
households and industries for goods and services in
the retail and construction sectors.(7) To model the
recovery period, we use a time period of 10 years,
where the model iterates over each day. In this
way, production will be increasing gradually with
each step, until the predisaster economic situation
is reached again. At each step, the new production
capacity is reassessed, taking into account the reduc-
tion in remaining damage and increase in labor, by
means of the Cobb-Douglas function as defined in
Section 2.2. For labor recovery, we assume a linear
return to the predisaster values(8) for each specific
flood event, constrained by the maximum needed
production capacity at a specific time period t and
per sector j as shown in Equation (12), where Lj

pd

is the postdisaster labor, Lj
0 is the initial amount of

labor, and λ is the recovery period for labor. A more
elaborate explanation about the recovery period is
found in Section 3.5.

Lj,t =min

{(
Lpd

j +t ∗ L0
j − Lpd

j

λ

)
;

(
Lj,t−1 ∗ Xj,t

X0
j

)}

(12)

For the determination of the remaining capital,
we ascertain for each time period t how much damage
can be reduced. This is based on the remaining pro-
duction capacity in the specific time period, as shown
in Equation (13), where Kj,t is the amount of capital
per sector and Ddir the remaining flood damage per
sector.
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Kj,t = Kj,t−1 −
(

Ddir
j,t−1 − Ddir

j,t
Xj,t

X0
j

)
(13)

The new obtained values for capital (Kj,t) and
labor (Lj,t) at the beginning of each time period
can be inserted into the Cobb-Douglas production
function (Equation (3)) to yield the new maximum
possible value added per sector. Finally, by using
Equation (4), it is possible to define the new remain-
ing production capacity (Xj,t), and to recalculate the
maximum production capacity per sector (Xj,t

max) by
using Equation (14), where “s” is the economic shock
per sector “j” and “θ” is the maximum possible over-
production (see Table II).

Xmax
j,t = X0

j (1 − s j,t ) θ j,t (14)

The remaining capital losses will reduce over
each time period, and the total output produced will
converge to the predisaster level. From this deriva-
tion, we can obtain the total indirect losses (Dind)
by calculating the difference between the total value
added throughout the recovery period, if no flood
had occurred (Yj

0), and the total value added for
each time period in the recovery period (Yj,t), as
shown in Equation (15).

Dind =
t∑

j=38

Y0
j −

t∑
j=38

Yj,t (15)

Finally, we can calculate the EAD of the spe-
cific direct losses (stock; see Section 2.1) and indirect
losses (flow) for the case-study area. To derive the
integral under the probability-loss curve, a trapezoid
approach is taken to assess the EAD, as shown in
Equation (16), where f is the specific flood event, Pf

the probability for the flood event, and Df the losses
for the flood event, which is either Ddir or Dind (im-
portant to note is that they should not be added up).

EAD =
6∑

f =1..6

(
(Pf − Pf +1) ∗ (Df +1 − Df )

2

)

+ (Pf − Pf +1) ∗ Di . (16)

3. UNCERTAINTY AND SENSITIVITY
ANALYSIS SETUP

Vast literature on modeling disaster con-
sequences documents wide variation in model
outcomes.(24,41,42) These outcomes depend on the
assumptions made by modelers (for example, with

regard to accounting for direct loss or the path of re-
covery) and uncertainty in input parameters used in
the modeling framework. Because damage estimates
are often used as key figures in flood management
decisions, it is important to explore the influence
of model assumptions and parameter uncertainties
on the resulting estimates. Therefore, the presented
flood risk model will be used to carry out extensive
UA and SA.

UA investigates the variation in model output
as a result of imprecise knowledge of input
parameters.(43,44) By performing analyses with dif-
ferent assumptions or parameter values, a range in
output values is generated that represents the uncer-
tainty in the output. SA is an extension to the UA, in
which the variance in the output is attributed to the
input parameters that were varied in the UA (Fig. 3).
This shows how important uncertainty in each input
parameter is in influencing the output. In this article,
uncertainties and sensitivities are analyzed in two dif-
ferent ways. The first way is to investigate parameter
uncertainty in the model using a global SA in which
the entire sample space is systematically explored
and interaction between input parameters can be ac-
counted for. This contrasts local SA, which varies
parameters one at a time.(45,46) The second way is
by exploring different recovery scenarios by adjust-
ing critical assumptions in the modeling framework
related to, among other factors, import and export
restrictions and flood duration. This will illustrate the
uncertainty related to model assumptions, which can-
not be fully explored in the global SA, and unveils
whether there are certain thresholds that mark struc-
tural changes in model outcomes.

3.1. Uncertainty and Global SA

By performing an SA, it is possible to identify
both parameters that have a large effect on the model
output and parameters that have little effect on the
output. Parameters that have a large effect should
receive additional attention in order to cope with the
uncertainty they introduce, whereas parameters that
have little effect are justified to keep constant.(47)

Since both UA and SA require a large number of
repeated model evaluations, they will be carried out
within a Monte Carlo modeling framework. Within
this study, we follow the approach as described
by Crosetto et al.(44) and Helton(43) to investigate
the uncertainty and sensitivity related to input
parameters. Those authors distinguish the following
steps: (1) assigning distributions to input parameters,
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Fig. 3. Schematic representation of the uncertainty and sensitivity
analyses (after Crosetto et al.(44)).

(2) generating samples of different combinations of
input parameters, (3) evaluating the model using the
generated combinations of input parameters, and (4)
analyzing the results for uncertainty and sensitivity.

In this study, we will perform a global SA, which
enables us to explore the variation in model output
and to allocate the variation in this output to the
different input parameters, taking into account inter-
action between these parameters.(47–49) By applying
the Simlab functions for Matlab,(50) we sampled
2,816 different combinations of input parameters
using the Sobol method.(51) This method generates
quasi-random samples of the parameters to be
tested, covering the entire sample space (as opposed
to varying one at a time). For the uncertainty and

global SA, we look at the following parameters:
business insurance penetration rate, household in-
surance penetration rate, maximum overproduction,
adaptation to overproduction, debt reimbursement
timescale, household/firm ratio capital ownership,
labor recovery, sector heterogeneity, and reconstruc-
tion speed. See Table II for descriptions of these
parameters and the distributions assigned to them.

3.2. Scenario Approach

Besides performing a global SA to investigate
the effect of parameter uncertainty, we also explored
in closer detail the effect of a couple of key model-
ing assumptions that cannot be explored in full de-
tail within a global SA. This relates to assumptions
in model structure that cannot be captured by a pa-
rameter, such as the availability of inventory, or to
the exploration of parameters in such an extent that
they would not be plausible for the case in question,
but may be plausible in other cases (such as very long
flood duration). In the global SA, the distribution
of such parameters is assumed within more realistic
boundaries for the case of Rotterdam. See below for
an explanation of the assumptions addressed in the
scenario approach.

� Restricted inventories in the construction and
retail sector (Section 2.4). The ARIO model(24)

assumes that the inventories in the construction
sector are unrestricted due to substitution possi-
bilities and assistance from nonaffected regions.
Practice shows that this is not always the case
and rigidities occur often at the beginning of
recovery. Therefore, we will explore to what
extent indirect losses will change when the con-
struction and retail sectors have limited inven-
tory, similar to the other sectors in the affected
region.

� Variation in flood duration. As mentioned in
Section 2.4, the time of flood duration can have
a significant influence on the output of the
model. If an area is inundated for a couple of
months (as can be expected in polder areas),
during that time production is halted and recov-
ery is delayed, substantially influencing the in-
direct losses. For unprotected outer dike areas,
such as in our study, it is assumed that the water
flows quickly away;(37) however, in the face of
generality offered by the model we shall analyze
how differences in flood duration can affect the
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model output also within protected dike-ring
areas.

� Time of labor recovery (Section 2.4). Due to a
lack of empirical data on recovery periods in
port areas, it is not known how much time it
takes for labor to recover. Numerous factors
can have an influence, all covered within un-
certainty (e.g., duration of evacuation, speed
at which the flooded area becomes accessible,
speed of recovery of utilities, infrastructure, and
transportation). For the Rotterdam area, we as-
sume a relatively quick labor recovery, also in
the global SA. Again, for the sake of general
applicability, it is worthwhile to check extreme
durations of labor recovery.

� Availability of inventories present after the
flood and the time of restoration of these in-
ventories (Section 2.4). Literature(24) shows that
this can significantly change the flood losses and
a near absence of inventories can even make the
economy collapse. Therefore, it is important to
test whether similar effects are to be expected
in different areas and for different flood sever-
ity levels.

4. DATA AND STUDY AREA

The case-study area concerns the municipality
of Rotterdam in the Netherlands, with one of the

largest seaports in the world, and the surrounding
municipalities. Besides a large industrial zone, the
area mainly consists of built environment (both com-
mercial and residential), agricultural land, and small
patches of nature (Fig. 4). Most of the harbor area is
unprotected and located outside the flood embank-
ments, which makes it more vulnerable to floods.

As mentioned in Section 2, the modeling frame-
work proposed in this article only requires three data
inputs: an inundation map, a land-use map, and an
I-O table, making it widely applicable. The inunda-
tion maps in this study are based on maps developed
by Huizinga,(52) with flood return periods ranging
between 1/10 and 1/10,000. In the harbor area, we
assume the water flows away within one day for
high-probability floods and up to one week for a low-
probability flood. The land-use map is an updated
version of the land-use map developed by De Moel
et al.(25) and includes 16 industrial land-use classes.

For the indirect loss assessment, an I-O table
is required. For illustrative purposes, we make use
of an I-O table for the year 1992, developed by
IRIOS(53) and corrected for inflation. Even though
these data are not recent, they allow us to test the
modeling framework. As found in Nijdam et al.,(54)

the relative industrial shares in the port have re-
mained similar over time, which suggests that the in-
dustrial dependencies of the 1992 table are still rele-
vant for the current port activities. However, the total

Fig. 4. Land-use map of the greater Rotterdam area.
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Table III. Flood Loss and Risk Estimates for the Rotterdam Area

Return Direct Losses Indirect Losses At 99% of Initial
Period (in Billion Euros) (in Billion Euros) Total Output

1/10 0.22 0.13 18 days
1/100 0.44 0.29 78 days
1/1,000 0.76 0.61 173 days
1/2,000 0.92 0.83 255 days
1/4,000 1.10 1.14 351 days
1/10,000 1.88 2.51 647 days
EAD (million Euro/year) 36.1 23.4

losses might be possibly underestimated due to the
large growth of value added in the Rotterdam port
area since 1992.(39) See the Appendix for a list of sec-
tors that are included in this table.

5. RESULTS AND DISCUSSION

5.1. Flood Risk Estimates

For the harbor area of Rotterdam, we assessed
the flood damage for six flood events with varying
flood probabilities (Table III). For high-probability
floods, we see that direct losses are almost two times
higher than the indirect losses (0.22 billion Euro
damage for direct losses vs. 0.13 billion Euro dam-
age for indirect losses). However, as soon as the
flood becomes less probable and more severe, the
indirect losses start to become much more impor-
tant (up to 40% higher than the direct losses for
the 1/10,000 flood). From floods with a return pe-
riod of 1/4,000 and higher, we find that the indirect
losses are larger than the direct losses. This differ-
ence can be explained by the expected relative quick
recovery with high-probability floods, which prevents
large income losses within the affected area as well
as elsewhere in the economy. At the same time, low-
probability floods are more severe due to higher wa-
ter depths, longer flood durations, and a larger flood
extent, thus leaving many more businesses directly
affected. Besides, because a larger share of sectors
is out of business, income that is lost over a longer
period of time and a longer recovery period result in
high indirect losses in the rest of an economy, and
therefore high indirect losses for this type of floods.
When combining the losses for different return peri-
ods into EAD (Equation (16)) we see that the direct
risk still remains larger than the indirect risk (approx-
imately 50% larger). When disaggregating the di-
rect losses for the 1/10,000 flood, the largest share in

damages can be found in the retail sector (35%), the
oil sector (17%), and in residential areas (10%).

Fig. 5 shows the total output of the whole re-
gion in the postdisaster period for each time period.
As can be seen, when the flood hits the area, the
economy is not at its lowest point. The most im-
portant reason for this phenomenon is the fact that
most of the firms still have inventories available. As
soon as all the firms run out of stock, the economy
hits the lowest point. Directly thereafter, however,
we see a rather quick recovery in the first couple
of months. The main reason is the recovery of la-
bor, which is assumed to last for a maximum three
months (this is assumed for all return periods). After
labor is recovered, it is mostly capital that needs to be
reconstructed. As seen in Table III, for high-
probability floods where the damages are low and
relatively little capital is lost, recovery to the pre-
disaster situation is quick (several weeks to several
months).

5.2. Parameter Uncertainty and Sensitivity

The results for the uncertainty and global SA
are shown in Table IV and Fig. 6. Table IV shows
mean and median values for each of the six return
periods and the 2.5% and 97.5% percentiles to
illustrate the uncertainty in the model output. We do
not report the standard deviations here due to the
non-Gaussian distribution of the model output. In
addition, the median damage is a more appropriate
centrality indicator in this case compared to the
arithmetic mean.(47) Overall, the 95% confidence
interval and the histograms in Fig. 5 show that the
uncertainty and variation in model output is substan-
tial. Interestingly, we see large differences in model
output uncertainty between the different return
periods. For the 1/100 flood, the confidence interval
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Table IV. Statistics of the Model Output for Each Flood Event in This Study

Flood Return Period (Model Output in Billions)

1/10 1/100 1/1,000 1/2,000 1/4,000 1/10,000 EAD (million Euro/year)

Mean indirect losses (Euro) 0.13 0.25 0.50 0.64 0.85 2.53 21.0
Median indirect losses (Euro) 0.13 0.24 0.48 0.61 0.79 1.88 20.2
2.5% percentile (Euro) 0.05 0.10 0.23 0.29 0.40 1.05 8.9
97.5% percentile (Euro) 0.22 0.41 0.77 0.99 1.52 7.28 35.0
Indirect losses using “reference” values 0.13 0.29 0.61 0.83 1.14 2.51 23.4

Fig. 5. Total value added per time period in the postdisaster pe-
riod for the total regional economy.

shows that the value of indirect losses at the 97.5%
percentile is 1.7 times higher than the median indirect
losses. However, for the 1/10,000 flood, the indirect
losses at the 97.5 percentile are almost four times
higher than the median indirect losses. The EAD
resembles results similar to the high-probability
floods because these contribute the most losses to
EAD in absolute terms compared to low-frequency
floods.(55) For all return periods, the indirect losses
using “reference values” (see Table II) are somewhat
higher compared to the median indirect losses.

The histograms in Fig. 6 visualize the variation in
model output for three different inundation scenar-
ios. The panel on the left shows the histogram of a
1/100 flood, which is much more normally distributed
than the panel on the right (a 1/10,000 flood), which
is particularly right-skewed and has a long tail going
into higher indirect losses. These outcomes imply
that the different model parameters have different
influences across different severities of floods. This
becomes evident from the diagrams in Fig. 7. For

the 1/100 flood, the speed of reconstruction exerts
the highest influence on the model output (the green
part; colors visible in online version), followed by the
heterogeneity of the economy (the orange part). For
the 1/1,000 flood, this is just the other way round (i.e.,
heterogeneity of the economy now has the highest
influence). For both floods, labor recovery (the blue
part) has the third highest influence, albeit much
smaller than the other two. The 1/10,000 flood shows
a slightly different pattern. Again, the heterogeneity
of the economy and the speed of recovery have
a large influence, but also the household to firm
capital ownership ratio (the purple part) now shows
a significant influence on the model output. This
implies that for large-scale floods, damage estimates
may vary substantially depending on whether pre-
dominantly local, privately owned businesses are
hit by the flood, or large businesses that are less
dependent on the regional economy.

Overall, the model output is quite sensitive to
assumed levels of parameters, particularly to the
heterogeneity of the economy. This is in line with
results of Hallegatte.(7,24) However, in contrast to
Hallegatte,(7,24) the parameters related to maximum
overproduction, and adaptation to overproduction,
have relatively little influence on the results com-
pared to the other parameters. However, we found
a reduction of 7% in the estimated losses when in-
creasing the maximum overproduction from 125%
(the reference value) to 200%. This implies that
the overproduction does influence the loss esti-
mates (although less so), as also found in studies in,
for instance, New Orleans,(7,24) Copenhagen,(56) and
Mumbai.(57)

5.3. Flood and Recovery Scenarios

For the scenario approach, we tested differences
in labor recovery period, flood duration, unrestricted
stock availability in the construction and retail sector,
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Fig. 6. Results of the uncertainty (histograms) and sensitivity (pie charts) analyses for the 1/100, 1/1,000, and 1/10,000 floods. The histograms
show the variation in the damage estimates resulting from the Monte Carlo analyses. Note that a different scale is used for the x- and y-axis
between the different floods. The pie charts represent the total variance of the output and indicate how much the uncertainty in each of the
input parameters contributes to the variance of the damage estimates.

and the inventories available per sector. We found
that there is only a small (less than 2%) reduction
in EAD if we assume that the available stocks in
the construction and retail sector are unconstrained.
This implies that in the Rotterdam region, the con-
struction and retail sector are already big enough to
be able to satisfy all additional demand due to re-
construction. For the other tested assumptions, we
will describe the results only for the 1/10,000 flood
as the indirect effects are most substantial there (see
Fig. 5).

Fig. 7 shows the different model outputs when
varying labor recovery and flood duration. The
left-hand panel of Fig. 7 shows the postdisaster
period for different labor recovery periods for the
1/10,000 flood, where up to 12 months there are no
considerable changes in the recovery path. However,
if labor recovery takes up to 24 months, the recovery
takes much longer and the losses almost quadruple
compared to a labor recovery period of three months
(2.52 billion Euro losses for three months of labor
recovery vs. 10 billion Euro losses for 24 months of

labor recovery). It is important to note that capital
and labor have different recovery paths and might
therefore both return at different time periods at
their predisaster values (in this model, labor always
returns more quickly to its predisaster value than
capital). However, when labor is back at its predis-
aster value, this does not mean that it can directly be
fully utilized without the full amount of capital. In
such a situation, the Cobb-Douglas function would
overestimate total production. Essentially, the Cobb-
Douglas function “smoothens” predicted production
growth during recovery (over the top of the “steps”),
which rather takes place stepwise. Therefore, esti-
mated production may deviate from “real” output
at some intermediate stages of recovery, but would
expectedly approximate real production when all
production factors are available. Even though this
smoothing might influence the final estimation of
losses, it is expected this influence is rather small and
should not influence the composition of the losses
nor the EAD, which is mainly influenced by the
small-scale floods.
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Fig. 7. Recovery paths for the “flood duration” (left panel) and “labor recovery” (right panel) parameters for a 1/10,000 flood. The total
flood damage for each scenario is shown in the legend of the graph.

Similar indirect losses are found for the flood du-
ration (right-hand panel of Fig. 7). Up to 140 days of
no recovery, the recovery path stays relative similar.
However, when the area is inundated for up to 280
days, we find a significant increase in losses (losses
triple). Flood duration can thus be an important fac-
tor impacting (indirect) flood losses, as also found
by Dutta et al.(58) and Fӧrster et al.(59) Both results
imply that from a certain threshold in flood impact,
the regional economy has severe problems in get-
ting back to its predisaster state. However, it is im-
portant to note that for the labor recovery and flood
duration, respectively, 24 months and 280 days are
extreme cases and are expected to be rare occur-
rences. Nonetheless, it shows how vulnerable an
economy can be when extreme events occur.

Lastly, our analyses confirm the findings of
Hallegatte(24) that the amount of available postdis-
aster inventory highly influences the losses. When we
reduce the inventories of all sectors by 50% and as-
sume also an inventory restoration that takes twice as
long as in the baseline case, the indirect losses for the
1/10,000 flood double. It is important to note that this
increase is only visible for the 1/10,000 flood. For the
higher probability floods, almost no differences oc-
cur. This implies that the size of inventories only mat-
ters for a particularly severe and spatially extensive
flood. On the other hand, when we double the post-
disaster inventory of each sector, the indirect losses
for the 1/10,000 flood decrease by only 8%. This sug-
gests that there might be an optimum value of stock
available, which may have important implications for
disaster preparedness measures. Finally, reducing the
available inventories by more than 50%, the indirect

losses increase exponentially (up to 10 times). Sec-
tors running out of inventories and thus unable to
supply their products therefore impose limitations on
production possibilities of other sectors throughout
the economy. This can eventually result in a full pro-
duction standstill, leading to economic collapse.(24)

6. CONCLUSIONS

In this study, we have introduced and suc-
cessfully applied a dynamically coupled direct and
indirect risk model for small- and large-scale flood
events that allows modeling of total economic losses
from the flood hazard, up to a full recovery. The con-
cept of EAD, borrowed from engineering literature,
was thereby applied to reflect the expected losses
from various types of floods. One of the novelties
of this approach is the use of a Cobb-Douglas
production function that translates losses in both
capital and labor into production losses, making loss
accounting more consistent. Such an approach is of
particular importance for the large (low-probability)
floods that involve human victims. Furthermore,
the model allows for conducting an extensive SA
of its underlying assumptions and identifying those
parameters for which model outcomes are highly sen-
sitive. For other parameters, “safe” ranges are sug-
gested within which models estimates remain stable.

This study showed the added value of combin-
ing different flood loss estimation approaches into a
single dynamic integrative framework. By applying
six flood events (1/10 up to 1/10,000) to reflect the
full risk distribution, estimates of the consequences
of both high- and low-probability floods, as well as
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differences therein, can be obtained. Improved in-
sight into the composition of losses obtained with the
help of the proposed model can thus help make bet-
ter decisions with regard to, for instance, flood pro-
tection measures.

We can draw two important conclusions from
our results for disaster modelers and practitioners.
A first conclusion is that small (high-probability)
events are qualitatively different from large (low-
probability) events in terms of the ratio di-
rect/indirect damages to an economic system. Our
results showed that for high-probability floods (up
to 1/4,000 per year) direct losses remain larger com-
pared to the indirect losses, but for low-probability
floods (less frequent than 1/4,000 per year), the indi-
rect losses are more substantial relative to the direct
losses. In terms of EAD, the direct risk still remains
larger than the indirect flood risk (approximately
50% larger). However, looking at the EAD alone can
be misleading. Our results show that different param-
eters exert a different influence on loss estimates for
the high-probability and low-probability floods. As
the EAD is mainly influenced by outcomes of high-
probability floods, care should be taken in drawing
conclusions about an “average” effect of a particu-
lar parameter. This implies that both the EAD and
its composition need to be considered when assess-
ing flood risk for a specific region and making policy
choices.

A second important conclusion of our find-
ings is that there are parameter thresholds that
distinguish small (high-probability) events from
large (low-probability) events in terms of resulting
damages to the entire economic system. The UA
and SA show that there is large variety in parameter
values that makes model outcome extremely sensi-
tive (upper-bound estimates are up to seven times
higher than lower-bound estimates). Interestingly,
large differences in parameter influence are found
between high-probability and low-probability floods.
For instance, the speed of labor recovery is of high
influence for high-probability floods, whereas the
heterogeneity of the economy determines for a large
part the amount of indirect losses for low-probability
floods.

Our results therefore imply that making appro-
priate assumptions about parameter values based
on prevailing geographic conditions and type of
flood event is critical to model outcomes. We find
that some parameters appear to be of particular
importance in this context. In particular, if “labor
recovery period” or “the flood duration” become too

long (two years for labor; half a year for the flood du-
ration) our results show that the indirect losses triple
compared to the reference situation. While these
identified thresholds for the labor recovery and flood
duration are rather extreme, our analyses show how
vulnerable an economy can be when extreme events
occur. In addition, when reducing available stocks by
more than 50%, the indirect losses increase up to 10
times in low-probability floods. These results imply
that maintaining an inventory to allow a certain
degree of flexibility in the production chain should
be an important focus in disaster preparedness and
recovery planning. It is important that businesses in
flood-prone areas can maintain and quickly restore
their inventories to speed up the recovery process.

Despite uncertainties, our results give an indica-
tion of the total consequences of a flood when taking
both direct and indirect losses into account. In the
future, more research is required on a number of el-
ements of this model. For instance, we have assumed
here a return to the predisaster production propor-
tions and ultimately predisaster production capaci-
ties, which may not necessarily be targeted or even be
possible in a postdisaster situation. Future research
may therefore explore other recovery trajectories.
Also, substitution effects outside the region can play
a significant role in the speed of recovery. Thus, an
interregional model would be more appropriate in
order to capture the indirect effects after a flood as
well as identify sources for recovery available within
an economy. Finally, one can assume that affected
critical infrastructure, which may cause, among oth-
ers, power outages, shortages in fresh water, or dis-
ruption of communication channels, can significantly
slow down the recovery process, deserves additional
attention in disaster modeling.
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APPENDIX A: FRAMEWORK ARIO MODEL

Fig. A1. Modeling framework of the most important steps within the ARIO model.

APPENDIX B: LIST OF INDUSTRIAL
SECTORS

Table B.I. List of Economic Sectors in the Input-Output Table

1 Agriculture, horticulture, and forestry
2 Fishing
3 Mining and quarrying
4 Manufacture of dairy products
5 Manufacture of other food products
6 Beverage and tobacco industry
7 Textiles industry
8 Clothing industry
9 Leather, footwear, and other leatherwear
10 Wood and furniture industry (excluding metal furniture)
11 Paper, cardboard, and paperware industry
12 Printing, publishing, and related industries
13 Petroleum industry
14 Chemical, rubber, and plastic-processing industry
15 Building materials, earthenware, and glass products
16 Basic metal industry, manufacture of metal products, and

machinery
17 Electro technical industry
18 Automobile industry

(Continued)

Table B.I. Continued

19 Manufacture of other transport equipment
20 Instruments, optical goods, and other industry
21 Public utilities
22 Construction and installation of construction projects
23 Wholesale trade, trade intermediaries, and retail trade
24 Hotels, restaurant, cafés, etc.
25 Repair of consumer goods
26 Sea and air transport
27 Road transport and supporting industries for transport
28 Communication
29 Banking
30 Insurance
31 Exploitation of and trade in real estate
32 Business services, renting machinery, other movables
33 Government, compulsory social security, and defense
34 State and nonstate subsidized education
35 Social services
36 Health and veterinary services
37 Cultural, sports, and recreational services
38 Other services
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