Live coding in Western
classical music

Alvaro Céceres Mufioz
Theatre, Film, TV and Interactive Media, the University of York
alvaro.caceres@york.ac.uk

Licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Copyright remains with the author(s). ICLC 2020, February
5-7, 2020, University of Limerick ,Limerick, Ireland

Abstract

This research project explores how to maximize the usability of live
coding tools (which allow improvising music with programming) for
classical musicians.

To do so, two goals are set for the project: understanding how
live coding can be used in traditional composition, and understand-
ing how do classical musicians feel when live coding. These goals
have been achieved using a prototype for a live coding system, which
is specifically designed for classical musicians.

Current literature and technologies have been studied to think of
potential target users and their skills and needs. Based on this, the
prototype has been designed (both from HCI and programming lan-
guage design perspectives), implemented, and evaluated by classical
musicians.

Results show that experienced composers may benefit the most
from live coding systems, provided they offer enough expressiveness,
responsiveness and feedback, and that their grammar is aligned with
musical language.

Keywords: Live coding, Classical music, HCI, Human-computer
interaction, Usability, Improvisation, Composition, Algorithmic com-
position

Research Question

Western-based music creation largely relies on pattern transformation.
Therefore, programming algorithmic nature seems to match classi-
cal musicians mindset. The hypothesis proposed is that classically-
trained musicians use conventional instruments to improvise and com-
pose music, but they could benefit from live coding. However, current
live coding programming languages are more oriented towards either
experienced programmers or musicians performing electronic music.
Therefore, this research tries to address the following problem: How
can live coding be used in classical music?

mailto:alvaro.caceres@york.ac.uk

Aims and Objectives

Such problem exposes a series of goals to fulfil.

e Address how live coding can be used in traditional composition:
improvisation and programming share things in common (ab-
straction, structuring, immediateness), but classical musicians
may not feel comfortable programming. Live coding systems
should reduce these difficulties while helping them to create mu-
sic more efficiency.

e Understand how classical musicians feel when using live coding;:
to make sure the usability of these systems is maximized for
them.

In order to do this, a prototype for a live coding system has been
developed that allows musicians to create music easily. The system
notation has been designed to be as similar to solfége notation as pos-
sible. Also, it combines code typing with MIDI input, to provide a
balance between algorithmic music generation and traditional instru-
ment playing (which classical musicians are more familiar with). This
prototype has been evaluated with users using qualitative methods to
make sure that it is well suited for their specific needs.

Motivation

Live coding is becoming increasingly popular, with new languages
being released every year. Most of these languages are designed for
sound synthesis and electronic music. Because of this, this project an-
alyzes how live coding could be used in classical music. The hypothesis
for this project has been tested with a high fidelity prototype of a live
coding system (BachTracking), based on preliminary user feedback
and a study of current live coding programming languages.

Background and related work
Live coding programming languages

Several programming languages have been described in this section,
each highlighting different aspects relevant to live coding for classical
music. SuperCollider (Wilson et al. 2011) focuses on sound, has an
object-oriented and decoupled architecture, and its OSC compatibil-
ity makes it the basis of other languages. One of them is SonicPi,
designed for school students (Aaron 2016), by providing intuitive UI
and documentation. TidalCycles controls SuperCollider via MIDI and
OSC and relies on Laurie Spiegel’s pattern transformations (Spiegel
1981) to create new music. It is functional like Extempore (Sorensen
and Gardner 2017), which grants live low-level audio programming
(Sorensen 2014). Other languages like Max and Pure Data (Zim-
mer 2007) use visual paradigms; similarly, OpenMusic (Bresson et
al. 2010) includes graphical score notation. Orca (GitHub 2019) is
visual and text-based, and it uses compact base-36 notation. Gibber
(Roberts et al. 2015) and Serialist (Github 2016) explore abstractions
that feel more familiar to musicians (e.g. a score).

HCI perspective

Magnusson (2019) states that computers are symbolically controlled,
but physically actuated; this can pose Ul mapping problems. Pane
et al. (2002) suggest that “idiomatic” syntax improves programmers
learning process, and so special characters should be avoided whenever
possible. Wanderley and Orio (2002) propose that usable electronic
instruments should be easy to learn, explore and modify, and they
should allow precise timing.

Music composition techniques

Like programming, composition exploits the concept of transforming
small music fragments. Counterpoint (Encyclopedia Britannica 2019;
Jackson 2013) follows this philosophy, using three basic transforma-

Scheduling

Environmeyit setup

Variables

Visual Studio Code extension

Text editor Notifications panel

Text buffer

Shortcuts

MIDI control

Musical notation to MIDI
‘events conversion

Musizal notation to MIDI
‘events conversion

Parsed code processing

Messages

Notifications

Lzw-level scheduling

Scheduler interface

Figure 1: System overview

tions: inversion, augmentation/diminution, and retrograde. Based on
counterpoint, serialism (Forte 1973) abstracts notes as numbers, sets
and vectors of distances (intervals). Spiegel (1981) proposed similar

inverse, join and mirror. Parenthesis are not required, and shorthand
names are available.

techniques, specifically focusing on pattern transformation.

Design

Target users

Table [L.T] shows classical musicians

can be divided into:

User interface

Figure |3 shows the UI proposed for the prototype. The text edi-
tor allows users to edit text without modifying the score. Errors are
displayed in red, to call the user’s attention. Keyboard shortcuts fol-
low consistency whenever possible (Ctrl-S Starts reading, Ctrl-Shift-S
stops reading).

User Music Coding Music
Expertise Expertise Abstraction
Composer High Low High
Player High Low Intermediate
Student Intermediate Intermediate Low
Table 1.1

A system that maximizes usability for these users should take
their specific skills and needs into account (for instance, it should be
possible to write music either note by note or using more abstract
structures).

Language

Figure [1] provides an overview of the system. It offers the metaphor
of an editor, a score and instruments. The score can be updated
and read sequentially. Reading the score sends MIDI to instruments
(keyboards, VSTs...)

The grammar (Figure [2)) tries to be as similar to natural language
as possible. Transformations can process melodies, variables or trans-
formations of any of those. They have been inspired by counterpoint
and Spiegel’s work: transposition, inversion, retrograde, retrograde

e MIDI_INPUT EN
NPUT_PORT

Figure 3: Ul Layout

MIDI note input is available as well, inspired by music notation
software (Avid 2018). Input is activated with a keyboard shortcut,
and it writes notes as plain text (code) in the text editor, so they can
be manually edited if needed.

8 - Inaslvructions Nole W ith Duration — Naote Duration”
Instrudions — Instruction (new Line Tnstruction))" Tomes Repetstzon ~+ temes natural Number
Tnstrudion — EnvirenmenlSetup | Variable Assignmenl | Scheduling Nole =+ I{M'Mm space*)” piteh Aecidental” relativeQctave’
EnvironmentSel —+ startListeningToM DI ListeningToM 101 -
-’ |m|wt|:ra|r-'w||::-w R > sharp’ | Jlart
_ _ N Duration + Pomwer)f Towo dot®
Time = time space” natural Number slash Power() fTwo PewerfTwo —+ matural Number
Tempo —+ Lemnpo space’ Duralion space® equals space® equals -t
mual vl Number spare 2"
Variable Assigronent —+ variable Name space” equals space™ Music new Line = [\m\ r | w2028 \ w2029)
Seheduling — TimeMarker space™ Musiclnstrsction tub -+ [\l
Time Marker —+ AtMarker lefiParenthess + [
AtMarker —+ al space” Bar Marker right Parenihesia - :r
BarMarker <+ bar space® nalural Number slash -+ _r
MusicInstruction — Instrument Schedule Music slop : ."d
slari + "start’
Instrument Schedule Music — Instrument Name spoce® Music aalt + "exit’
Instrurment Name = lelters stari ListeningToMIDI —» 'stariLisieningToM 1 DI’
Music —+ varwable Re ference | Mr‘u’yl Trans formalion stoplListerengToM 11D + "stopListeningToM | DI
Trans[ormation ~+ Transposition | Inversion | Retrograde sharp + ¥
| Retrograde I'nver sion | Mirror | Join [lat » '
Transposition “ transpose space’ Interval (space® Ascendenee)’ dol * :'
space” Music :r : .;
Interval —+ Fuhﬂul(,:lud:!' natural Number malady + “melody | ‘mel
| matural N umber PP i
Asvendeniry —+ ascendding | descending - + "bimd'
Inlerval(Quality —+ inlerval Major | interval Minor | inderval Per fect tennpe » el
| interval Augmented | snterval Dyvminished ik + |V
Inversion —+ tnverse space . Musie resl 'Y
Retrograde — retrograde space ' Music absoluled belave —+ "o natwral Number
Retrograde [nversion —+ retrograde fnverse space® Music “i"""'{f"‘"' » = |"n‘
Mirror + tmarror (space* marror Last)” space® Musie :::f\umln :: E:?:_21+]._¢= _zo—op
Join 4 join space” Music space® Music variableName + [olla — 2A — Z0— 9f*
Melody — MelodyIntegraled Duration variable e ference —+ varubls Nams
Melodylntegrated Duration — melody space™ NolesW ith Duration iniferal Major - 'M
NotesWalh Duralion — NoteW sthDuralion(roup interval Mmor + 'm"
(space™ NoteWith Mﬁm{}nmp;]' interval Pes fect L
NoteWithDurationGroup —+ NoteWithDuration TimesRepetition” inlerval Augmented Sy
| le ft Parenthesis NotesWithDuration right Parenthesis | inperval Diminished .y
P Repetition TimesRepeliti) o fing' | ‘asc’
de sevnding —+ "descending’ | ‘desd
transpose — "transpose’ | "trans’ | "T
T s —+ "imverse’ | "md |1
relrograde = "retrograde’ | ‘retr’ | K
redrograde Inverse —+ "retrogradeInverse’ | "retr | RI'
mirrer —+ "mirror’ | "'mir’ |'M*
Join —+ "join’ | 'S
mirror Last + "murvor Last’

Figure 2: BachTracking grammar

Implementation
Language

In this system EL the language works as a server that listens to text
coming from the UI. This text is parsed and sent to a score object.
The score controls a MIDI scheduler, which communicates with any
connected instruments. It also handles MIDI note input (Figure [4)).

User interface

The UI has been developed as a Visual Studio Code extension, given
its active support (as of 2019). The UI (Figure [3]) has three main
software-based Ul elementsﬂ text editor, notifications panel, and in-
formation/error messages.

Evaluation

Qualitative user evaluation was applied, and it was split into two
phases:

e Online interviews: users followed semi-structured interviews
about their experience making music with technology and live
coding. This was done first to improve the prototype before
testing it.

e In-lab user evaluation: users were asked to read a tutorial ex-
plaining how to use BachTracking during one day, before trying
the system. After that, I gave them a small crash course on how
to use BachTracking with the MIDI keyboard (this was done in
my house, using a laptop and a MIDI keyboard that had been
tested beforehand). Then they were asked to try the system

by playing some music with BachTracking. After this, they fol-
lowed a semi-structured interview to get feedback about their
experience creating music with this prototype.

Online interview

Demographics were balanced in this case. 3 out of 6 participants
were professional composers (in their mid-twenties) with studies at
graduate level from Kings College London, Conservatorium van Am-
sterdam (Netherlands) and Katarina Gurska music academy (Spain).
Two participants were intermediate classical piano students (18-22
years old) at the Professional Music Conservatory of Getafe (Spain).
The remaining participant was a music hobbyist in their late fifties
with intermediate studies in clarinet, who played in brass music bands
in Pinto and Getafe (Spain).

No participants knew about live coding previously, but a few
had programmed before. Composers were used to music technologies
(VST’s, DAW’s. ..), but students mostly used recording and notation
software as their music tools; they explicitly stated they preferred
acoustic instruments. Participants were asked how they create music,
and they described it as first relying on muscle memory and intuition,
and then structuring the idea in a more cerebral way.

Online interviews were conducted after starting to develop the pro-
totype and before testing it with in-lab user evaluation, thus helping
to refine features and functionality.

In-lab user evaluation

Composers used all of the language’s available functions, and they
even felt the freedom to experiment and force the system by using
notes with an incredibly small duration (thus creating blazing fast

1The code can be downloaded from |https://mega.nz/$#$F ! RbpizSxB!EOIbhF jPXB8QbwqzrsZGSw (notice it has only been tested in Ubuntu Studio).

2There are also physical Ul elements such as the MIDI keyboard, keyboard or mouse

https://mega.nz/$#$F!RbpizSxB!EOIbhFjPXB8QbwqzrsZGSw

= Untitled-1 ®

at barl piano mel c d e T g#

4 at barl piano mel o4 g a o5 d g# 06 d#

E TERMINAL

alvaro do killall node; bach

> BachTracking-1an@l.0.0 cuments/education/msc/subjects/research-project/demo/BachTracking/language
> node ./inde:

67

69

74

: 80

. 87
pped listening to MIDI

DodAo Ln4,Col39 Spaces:2 UTF8 LF PlainText @ M1

Figure 4: MIDI note input

sequences of notes). On the other hand, music students used MIDI
input for the most part of their performances.

Participants found some aspects of the system confusing, like not
seeing the bar number printed on the screen, and having to write the
octave number before the note duration.

Suggestions included having access to a live graphical score, a
graphical preview of the code to be executed, and accidentals omis-
sion. The possibility of writing code with MIDI input was proposed to
users to see if they would be interested in that feature; composers and
players thought it could be powerful, but students found it confusing.

Most participants composed rather than improvising live, perhaps
due to their classical background, or to insufficient practice time.

Conclusions
Key results and significance

The following main points can be extracted from this study:

e Expressiveness of the initial musical motif (with traditional in-
strument input), conciseness and transformation composability
can improve live coding usability for classical musicians.

e (lassical musicians may prefer using live coding for fast proto-

typing when writing music.

e Feedback and situation awareness are crucial to provide the re-
sponsiveness classical musicians find in the instruments they are
used to play.

e User-centered design may help to create live coding program-
ming languages that best adapt to the musicians who are going
to use it.

Future work

This project could benefit from more extensive user evaluation, which
could point out features to be included in the system, or usability er-

rors that should be corrected. Increasing training time would allow
participants to feel more comfortable improvising with BachTrack-
ing. Jazz musicians could be considered as participants in the fu-
ture as well. The language could incorporate more features: scales,
tempo transformation, harmony (voice leading), microtonality, larger
structural transformations, form... Developing two syntax modes
(large/understandable, and concise/ergonomic) could make the sys-
tem more flexible, and suitable to both compose and improvise.

References

Aaron, S. (2016). Sonic Pi — performance in education, technology
and art. International Journal of Performance Arts and Digital Me-
dia, 12(2), pp.171-178.

Avid. (2018). Sibelius Reference Guide version 2018.1.
[online] Available at: http://resources.avid.com/SupportFiles/
Sibelius/2018.1/Sibelius_2018.1 Reference Guide.pdf| [Accessed
18 Apr. 2019].

BBC. (2019). Melody - Edexcel - Revision 6 -
GCSE Music - BBC Bitesize. [online] Available at:
https://www.bbec.com /bitesize/guides/zwj2jty /revision/6 [Accessed
9 Apr. 2019].

Bresson, J., Agon, C., and Assayag, G. (2010). OpenMusic — vi-
sual programming environment for music composition, analysis and

research. ACM MultiMedia (MM’11).

Encyclopedia Britannica. (2019). Inversion | music. [online]
Available at: https://www.britannica.com/art/inversion-music
[Accessed 13 Apr. 2019].

Forte, A. (1973). The Structure of Atonal Music. Yale University
Press.

http://resources.avid.com/SupportFiles/Sibelius/2018.1/Sibelius_2018.1_Reference_Guide.pdf
http://resources.avid.com/SupportFiles/Sibelius/2018.1/Sibelius_2018.1_Reference_Guide.pdf
https://github.com/alvarocaceresmunoz/BachTracking/blob/master/tutorial/00-introduction.md
https://www.britannica.com/art/inversion-music

GitHub. (2016). serialist. [online] Available at: https://
github.com/irritant/serialist|[Accessed 5 Mar. 2019].

GitHub. (2019). Orca: Esoteric Programming Language. [online]
Available at: https://github.com/hundredrabbits/0Orcal [Accessed
5 Mar. 2019].

Jackson, R. (2013). Counterpoint | music. [online] Encyclope-
dia Britannica. Available at: https://www.britannica.com/art/
counterpoint-music|[Accessed 11 Apr. 2019].

Magnusson, T. (2019). Sonic writing. New York, NY: Bloomsbury
Publications.

Pane, J., Myers, B., and Miller, L. (2002). Using HCI techniques
to design a more usable programming system. Proceedings IEEE
2002 Symposia on HumanCentric Computing Languages and Envi-
ronments. IEEE, pp. 198-206.

Roberts, C., Wright, M., and Kuchera-Morin, J. (2015). Music
program-ming in gibber. ICMC.

Sorensen, A. (2014). GOTO 2014 Programming In Time - Live
Coding for Creative Performances

Andrew Sorensen. [online] Youtube. Available at: https://
www.youtube.com/watch?v=Sg2BjFQnr9s| [Accessed 20 Apr. 2019].

Sorensen, A., and Gardner, H. (2017). Systems level liveness with
extempore. Proceedings of the 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software. ACM, pp. 214-228.

Spiegel, L. (1981). Manipulations of musical patterns. Proceed-
ings of the Sym-posium on Small Computers and the Arts, pp. 19-22.

SuperCollider Docs. (2019). 02. First Steps | SuperCollider 3.10.3
Help. [online] Available at: http://doc.sccode.org/Tutorials/
Getting-Started/02-First-Steps.html| [Accessed 23 Apr. 2019].

Wanderley, M. and Orio, N. (2002). Evaluation of input devices
for musical expression: Borrowing tools from hci”. Computer Music
Journal 26.3, pp. 62-76.

Wilson, S., Collins, N. and Cottle, D. (2011). The SuperCollider
book. Cambridge, Mass.: MIT Press.

Zimmer, F. (2007). Bang. Hotheim: Wolke, p.133.

https://github.com/irritant/serialist
https://github.com/irritant/serialist
https://github.com/hundredrabbits/Orca
https://www.britannica.com/art/counterpoint-music
https://www.britannica.com/art/counterpoint-music
https://www.youtube.com/watch?v=Sg2BjFQnr9s
https://www.youtube.com/watch?v=Sg2BjFQnr9s
http://doc.sccode.org/Tutorials/Getting-Started/02-First-Steps.html
http://doc.sccode.org/Tutorials/Getting-Started/02-First-Steps.html

	Live coding in Western classical music

