Conference paper Open Access

Cognitive Architecture for Joint Attentional Learning of word-object mapping with a Humanoid Robot

Jonas Gonzalez-BIllandon; Lukas Grasse; Alessandra Sciutti; Matthew Tata; Francesco Rea


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/99562d93-7986-4178-a248-872e8bdf837c/Cognitive_architecture_word_object_learning.pdf"
      }, 
      "checksum": "md5:9ae431c2393906b2eef4aa0493e35cab", 
      "bucket": "99562d93-7986-4178-a248-872e8bdf837c", 
      "key": "Cognitive_architecture_word_object_learning.pdf", 
      "type": "pdf", 
      "size": 365759
    }
  ], 
  "owners": [
    111809
  ], 
  "doi": "10.5281/zenodo.3936610", 
  "stats": {
    "version_unique_downloads": 8.0, 
    "unique_views": 7.0, 
    "views": 7.0, 
    "version_views": 7.0, 
    "unique_downloads": 8.0, 
    "version_unique_views": 7.0, 
    "volume": 2926072.0, 
    "version_downloads": 8.0, 
    "downloads": 8.0, 
    "version_volume": 2926072.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3936610", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3936609", 
    "bucket": "https://zenodo.org/api/files/99562d93-7986-4178-a248-872e8bdf837c", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3936609.svg", 
    "html": "https://zenodo.org/record/3936610", 
    "latest_html": "https://zenodo.org/record/3936610", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3936610.svg", 
    "latest": "https://zenodo.org/api/records/3936610"
  }, 
  "conceptdoi": "10.5281/zenodo.3936609", 
  "created": "2020-07-09T09:08:01.080508+00:00", 
  "updated": "2020-07-09T12:59:19.740537+00:00", 
  "conceptrecid": "3936609", 
  "revision": 2, 
  "id": 3936610, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3936610", 
    "description": "<p>Since infancy humans can learn from social context to associate words with their meanings, for example associating names with objects. The open-question is which computational framework could replicate the abilities of toddlers in developing language and its meaning in robots. We propose a computational framework in this paper to be implemented on a robotics platform to replicate the early learning process of humans for the specific task of word-object mapping.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Cognitive Architecture for Joint Attentional Learning of word-object mapping with a Humanoid Robot", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3936609"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3936610"
          }
        }
      ]
    }, 
    "keywords": [
      "Self supervised learning", 
      "Deep Learning", 
      "Cognitive development"
    ], 
    "publication_date": "2019-11-08", 
    "creators": [
      {
        "affiliation": "Italian Institute of technology, University of Genova", 
        "name": "Jonas Gonzalez-BIllandon"
      }, 
      {
        "affiliation": "University of Lethbridge", 
        "name": "Lukas Grasse"
      }, 
      {
        "affiliation": "Italian Institute of technology", 
        "name": "Alessandra Sciutti"
      }, 
      {
        "affiliation": "University of Lethbridge", 
        "name": "Matthew Tata"
      }, 
      {
        "affiliation": "Italian Institute of technology", 
        "name": "Francesco Rea"
      }
    ], 
    "meeting": {
      "acronym": "IROS", 
      "url": "https://sites.google.com/site/dpgmcar2019/home", 
      "dates": "2019", 
      "place": "MACAU", 
      "title": "International Conference on Intelligent Robots and Systems"
    }, 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3936609", 
        "relation": "isVersionOf"
      }
    ]
  }
}
7
8
views
downloads
All versions This version
Views 77
Downloads 88
Data volume 2.9 MB2.9 MB
Unique views 77
Unique downloads 88

Share

Cite as