Other Open Access
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3936123"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3936123</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3936123"/> <dct:creator> <rdf:Description rdf:about="http://orcid.org/0000-0002-7219-2027"> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-7219-2027</dct:identifier> <foaf:name>Paulevé, Loïc</foaf:name> <foaf:givenName>Loïc</foaf:givenName> <foaf:familyName>Paulevé</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>CNRS/LaBRI</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Notebooks demonstrating Most Permissive Boolean Networks</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued> <dcat:keyword>Jupyter notebooks</dcat:keyword> <dcat:keyword>Computational systems biology</dcat:keyword> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-07-01</dct:issued> <owl:sameAs rdf:resource="https://zenodo.org/record/3936123"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3936123</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:relation rdf:resource="https://doi.org/10.5281/zenodo.3719059"/> <dct:relation rdf:resource="https://doi.org/10.5281/zenodo.3719029"/> <dct:relation rdf:resource="https://doi.org/10.5281/zenodo.3719018"/> <dct:relation rdf:resource="https://doi.org/10.5281/zenodo.3715516"/> <dct:relation rdf:resource="https://doi.org/10.5281/zenodo.3715210"/> <dct:relation rdf:resource="https://doi.org/10.1101/2020.03.22.998377"/> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3719096"/> <dct:description><p>These notebooks demonstrate Most Permissive Boolean Networks (<a href="http://dx.doi.org/10.1101/2020.03.22.998377">doi:10.1101/2020.03.22.998377</a>) on several case studies of biological networks.</p> <p>They can be executed interactively within the <a href="http://colomoto.org/notebook">CoLoMoTo Docker</a> version <code>2020-07-01</code>:</p> <ul> <li>online, using myBinder service at <a href="https://mybinder.org/v2/zenodo/10.5281/zenodo.3936123/">https://mybinder.org/v2/zenodo/10.5281/zenodo.3936123/</a></li> <li>or on your computer, provided you have <a href="https://docs.docker.com/get-docker/">Docker</a> and Python 3 installed: <ol> <li>download the notebooks individually from below, or from <a href="https://github.com/pauleve/MPBNs-SI-Notebooks/archive/main.zip">https://github.com/pauleve/MPBNs-SI-Notebooks/archive/main.zip</a> and extract the zip file</li> <li>execute the following commands, where <code>notebooks</code> is the folder in which you extracted the notebooks: <pre><code class="language-bash">sudo pip install -U colomoto-docker # you may have to use pip3 instead of pip colomoto-docker -V 2020-07-01 --bind notebooks</code></pre> </li> </ol> </li> </ul> <p>Visualize online:</p> <ul> <li><a href="https://nbviewer.jupyter.org/urls/zenodo.org/record/3936123/files/MPBN%20applied%20to%20Bladder%20Tumorigenesis%20by%20Remy%20et%20al%202015.ipynb">MPBN applied to Bladder Tumorigenesis by Remy et al 2015.ipynb</a></li> <li><a href="https://nbviewer.jupyter.org/urls/zenodo.org/record/3936123/files/MPBN%20applied%20to%20T-Cell%20differentiation%20model%20by%20Abou-Jaoud%C3%A9%20et%20al.%202015.ipynb">MPBN applied to T-Cell differentiation model by Abou-Jaoud&eacute; et al. 2015.ipynb</a></li> <li><a href="https://nbviewer.jupyter.org/urls/zenodo.org/record/3936123/files/MPBN%20applied%20to%20Tumour%20invasion%20model%20by%20Cohen%20et%20al.%202015.ipynb">MPBN applied to Tumour invasion model by Cohen et al. 2015.ipynb</a></li> <li><a href="https://nbviewer.jupyter.org/urls/zenodo.org/record/3936123/files/I3FFL%20-%20compatible%20MPBNs.ipynb">I3FFL - compatible MPBNs.ipynb</a></li> <li><a href="https://nbviewer.jupyter.org/urls/zenodo.org/record/3936123/files/Scalability%20on%20large%20random%20BNs.ipynb">Scalability on large random BNs.ipynb</a></li> </ul> <p>The notebooks rely on the Python library <a href="https://github.com/pauleve/mpbn">mpbn</a>, see the documentation for usage and examples at <a href="https://mpbn.readthedocs.io/">https://mpbn.readthedocs.io</a></p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL>https://doi.org/10.5281/zenodo.3936123</dcat:accessURL> <dcat:byteSize>32183</dcat:byteSize> <dcat:downloadURL>https://zenodo.org/record/3936123/files/bonesis-preview-20200701.zip</dcat:downloadURL> <dcat:mediaType>application/zip</dcat:mediaType> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL>https://doi.org/10.5281/zenodo.3936123</dcat:accessURL> <dcat:byteSize>198</dcat:byteSize> <dcat:downloadURL>https://zenodo.org/record/3936123/files/Dockerfile</dcat:downloadURL> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL>https://doi.org/10.5281/zenodo.3936123</dcat:accessURL> <dcat:byteSize>10369</dcat:byteSize> <dcat:downloadURL>https://zenodo.org/record/3936123/files/I3FFL - compatible MPBNs.ipynb</dcat:downloadURL> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL>https://doi.org/10.5281/zenodo.3936123</dcat:accessURL> <dcat:byteSize>116162</dcat:byteSize> <dcat:downloadURL>https://zenodo.org/record/3936123/files/MPBN applied to Bladder Tumorigenesis by Remy et al 2015.ipynb</dcat:downloadURL> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL>https://doi.org/10.5281/zenodo.3936123</dcat:accessURL> <dcat:byteSize>191554</dcat:byteSize> <dcat:downloadURL>https://zenodo.org/record/3936123/files/MPBN applied to T-Cell differentiation model by Abou-Jaoudé et al. 2015.ipynb</dcat:downloadURL> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL>https://doi.org/10.5281/zenodo.3936123</dcat:accessURL> <dcat:byteSize>70882</dcat:byteSize> <dcat:downloadURL>https://zenodo.org/record/3936123/files/MPBN applied to Tumour invasion model by Cohen et al. 2015.ipynb</dcat:downloadURL> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL>https://doi.org/10.5281/zenodo.3936123</dcat:accessURL> <dcat:byteSize>50310</dcat:byteSize> <dcat:downloadURL>https://zenodo.org/record/3936123/files/Scalability on large random BNs.ipynb</dcat:downloadURL> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 225 | 115 |
Downloads | 185 | 94 |
Data volume | 39.9 MB | 8.4 MB |
Unique views | 187 | 101 |
Unique downloads | 132 | 61 |