Journal article Open Access

PaccMann: a web service for interpretable anticancer compound sensitivity prediction

Cadow, Joris; Born, Jannis; Manica, Matteo; Oskooei, Ali; Rodríguez Martínez, María


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20200708125919.0</controlfield>
  <controlfield tag="001">3935564</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0001-8307-5670</subfield>
    <subfield code="a">Born, Jannis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-8872-0269</subfield>
    <subfield code="a">Manica, Matteo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-8318-687X</subfield>
    <subfield code="a">Oskooei, Ali</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0003-3766-4233</subfield>
    <subfield code="a">Rodríguez Martínez, María</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1178327</subfield>
    <subfield code="z">md5:34d47ade87f23a7935a5e0ed67080ad6</subfield>
    <subfield code="u">https://zenodo.org/record/3935564/files/gkaa327_.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ipc</subfield>
    <subfield code="o">oai:zenodo.org:3935564</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">502-508</subfield>
    <subfield code="v">48</subfield>
    <subfield code="p">Nucleic Acids Research</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-4410-2805</subfield>
    <subfield code="a">Cadow, Joris</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">PaccMann: a web service for interpretable anticancer compound sensitivity prediction</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ipc</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">826121</subfield>
    <subfield code="a">individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The identification of new targeted and personalized therapies for cancer requires the fast and accurate assessment of the drug efficacy of potential compounds against a particular biomolecular sample. It has been suggested that the integration of complementary sources of information might strengthen the accuracy of a drug efficacy prediction model. Here, we present a web-based platform for the Prediction of AntiCancer Compound sensitivity with Multimodal Attention-based Neural Networks (PaccMann). PaccMann is trained on public transcriptomic cell line profiles, compound structure information and drug sensitivity screenings, and outperforms state-of-the-art methods on anticancer drug sensitivity prediction. On the open-access web service (https://ibm.biz/paccmann-aas), users can select a known drug compound or design their own compound structure in an interactive editor, perform in-silico drug testing and investigate compound efficacy on publicly available or user-provided transcriptomic profiles. PaccMann leverages methods for model interpretability and outputs confidence scores as well as attention heatmaps that highlight the genes and chemical sub-structures that were more important to make a prediction, hence facilitating the understanding of the model&amp;rsquo;s decision making and the involved biochemical processes. We hope to serve the community with a toolbox for fast and efficient validation in drug repositioning or lead compound identification regimes.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1093/nar/gkaa327</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
42
38
views
downloads
Views 42
Downloads 38
Data volume 44.8 MB
Unique views 40
Unique downloads 37

Share

Cite as