Conference paper Open Access

Towards Visual Anomaly Detection in Domains with Limited Amount of Labeled Data

Štepec, Dejan; Skočaj, Danijel


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">anomaly detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">unsupervised</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">deep-learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">autoencoders</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">generative adversarial networks</subfield>
  </datafield>
  <controlfield tag="005">20200708125920.0</controlfield>
  <controlfield tag="001">3935533</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">19 March 2020</subfield>
    <subfield code="g">ROSUS2020</subfield>
    <subfield code="a">ROSUS 2020: Computer image processing and its application in Slovenia 2020</subfield>
    <subfield code="c">Maribor, Slovenia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Ljubljana</subfield>
    <subfield code="a">Skočaj, Danijel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">13474091</subfield>
    <subfield code="z">md5:d93be12cc55d41331c5ded4747e8ecdc</subfield>
    <subfield code="u">https://zenodo.org/record/3935533/files/ROSUS_2020_paper.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-03-19</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ipc</subfield>
    <subfield code="o">oai:zenodo.org:3935533</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">XLAB Research</subfield>
    <subfield code="a">Štepec, Dejan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Towards Visual Anomaly Detection in Domains with Limited Amount of Labeled Data</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ipc</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">826121</subfield>
    <subfield code="a">individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Anomaly detection in visual data refers to the problem of differentiating abnormal appearances from normal cases. Supervised approaches have been successfully applied to different domains, but require abundance of labeled data. Due to the nature of how anomalies occur and their underlying generating processes, it is hard to characterize and label them. Recent advances in deep generative based models have sparked interest towards applying such methods for unsupervised anomaly detection and have shown promising results in medical and industrial inspection domains.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.18690/978-961-286-337-1</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
15
13
views
downloads
Views 15
Downloads 13
Data volume 175.2 MB
Unique views 13
Unique downloads 12

Share

Cite as