Conference paper Open Access

Eager to Learn vs. Quick to Complain? How a socially adaptive robot architecture performs with different robot personalities

Tanevska, Ana; Rea, Francesco; Sandini, Giulio; Canamero, Lola; Sciutti, Alessandra


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/3931277">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3931277</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/3931277"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Tanevska, Ana</foaf:name>
        <foaf:givenName>Ana</foaf:givenName>
        <foaf:familyName>Tanevska</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Istituto Italiano di Tecnologia</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Rea, Francesco</foaf:name>
        <foaf:givenName>Francesco</foaf:givenName>
        <foaf:familyName>Rea</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Istituto Italiano di Tecnologia</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sandini, Giulio</foaf:name>
        <foaf:givenName>Giulio</foaf:givenName>
        <foaf:familyName>Sandini</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Istituto Italiano di Tecnologia</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Canamero, Lola</foaf:name>
        <foaf:givenName>Lola</foaf:givenName>
        <foaf:familyName>Canamero</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Hertfordshire Hatfield, Dept. of Computer Science</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sciutti, Alessandra</foaf:name>
        <foaf:givenName>Alessandra</foaf:givenName>
        <foaf:familyName>Sciutti</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Istituto Italiano di Tecnologia</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Eager to Learn vs. Quick to Complain? How a socially adaptive robot architecture performs with different robot personalities</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>Social robots and social learning</dcat:keyword>
    <dcat:keyword>Human-human and human-robot interaction and communication</dcat:keyword>
    <dcat:keyword>Architectures for Cognitive Development and Open-Ended Learning</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/804388/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-11-28</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3931277"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3931277</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1109/SMC.2019.8913903"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/contact_unit_iit"/>
    <dct:description>&lt;p&gt;A social robot that is aware of our needs and continuously adapts its behaviour to them has the potential of creating a complex, personalized, human-like interaction of the kind we are used to have with our peers in our everyday lives. We are interested in exploring how would an adaptive architecture function and personalize to different users when given different initial values of its variables, i.e. when implementing the same adaptive framework with different robot personalities. Would an architecture that learns very quickly outperform a slower but steadier learning profile? To further explore this, we propose a cognitive architecture for the humanoid robot iCub supporting adaptability and we attempt to validate its functionality and test different robot profiles.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/3931277"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/804388/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">804388</dct:identifier>
    <dct:title>investigating Human Shared PErception with Robots</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
12
21
views
downloads
Views 12
Downloads 21
Data volume 5.6 MB
Unique views 9
Unique downloads 12

Share

Cite as