Dataset Open Access

HADDOCK screening against human Angiotensin Converting Enzyme 2 (ACE2)

P. I. Koukos; M. Réau; A. M. J. J. Bonvin


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/a014fe1f-4cb8-4e34-a219-4e6ea56bae16/ace2.tar.xz"
      }, 
      "checksum": "md5:94d0cfc507a2c2d59d4d5f4a83353ade", 
      "bucket": "a014fe1f-4cb8-4e34-a219-4e6ea56bae16", 
      "key": "ace2.tar.xz", 
      "type": "xz", 
      "size": 23653952820
    }
  ], 
  "owners": [
    109022
  ], 
  "doi": "10.5281/zenodo.3929463", 
  "stats": {
    "version_unique_downloads": 6.0, 
    "unique_views": 153.0, 
    "views": 184.0, 
    "version_views": 184.0, 
    "unique_downloads": 6.0, 
    "version_unique_views": 153.0, 
    "volume": 165577669740.0, 
    "version_downloads": 7.0, 
    "downloads": 7.0, 
    "version_volume": 165577669740.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3929463", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3929462", 
    "bucket": "https://zenodo.org/api/files/a014fe1f-4cb8-4e34-a219-4e6ea56bae16", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3929462.svg", 
    "html": "https://zenodo.org/record/3929463", 
    "latest_html": "https://zenodo.org/record/3929463", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3929463.svg", 
    "latest": "https://zenodo.org/api/records/3929463"
  }, 
  "conceptdoi": "10.5281/zenodo.3929462", 
  "created": "2020-07-03T13:16:39.741392+00:00", 
  "updated": "2020-07-06T07:30:15.747444+00:00", 
  "conceptrecid": "3929462", 
  "revision": 7, 
  "id": 3929463, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3929463", 
    "version": "1.0.0", 
    "language": "eng", 
    "title": "HADDOCK screening against human Angiotensin Converting Enzyme 2 (ACE2)", 
    "license": {
      "id": "CC0-1.0"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3929462", 
        "relation": "isVersionOf"
      }
    ], 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3929462"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3929463"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "bioexcel"
      }, 
      {
        "id": "covid-19"
      }, 
      {
        "id": "covid19-structure-hub"
      }, 
      {
        "id": "zenodo"
      }
    ], 
    "grants": [
      {
        "code": "823830", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::823830"
        }, 
        "title": "BioExcel-2 Centre of Excellence for Computational Biomolecular Research", 
        "acronym": "BioExcel-2", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "777536", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::777536"
        }, 
        "title": "Integrating and managing services for the European Open Science Cloud", 
        "acronym": "EOSC-hub", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Docking", 
      "Virtual Screening", 
      "HADDOCK", 
      "COVID-19"
    ], 
    "publication_date": "2020-07-03", 
    "creators": [
      {
        "affiliation": "Utrecht University", 
        "name": "P. I. Koukos"
      }, 
      {
        "orcid": "0000-0002-3862-8990", 
        "affiliation": "Utrecht University", 
        "name": "M. R\u00e9au"
      }, 
      {
        "orcid": "0000-0001-7369-1322", 
        "affiliation": "Utrecht University", 
        "name": "A. M. J. J. Bonvin"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "description": "<p>The novel coronavirus (SARS-CoV-2) that has emerged from Wuhan, China in December 2019 has spread to almost all countries in the world causing a dramatic number of deaths. The current absence of antiviral treatment against the SARS-CoV-2 urges the scientific community to accelerate the drug discovery research process.</p>\n\n<p>One way to identify potential treatments and to be able to administer it swiftly is to focus on drug repurposing studies, i.e. to investigate the SARS-CoV-2 antiviral potential of drugs that have already been approved for human use.</p>\n\n<p>Proteins that are crucial for the survival and replication of the virus are the most attractive targets for such studies. Here we have focused on the Angiotensin Converting Enzyme 2 receptor (ACE2) that acts as one of the main gateways for viral entry in the host cell. We have screened ~2000 compounds against the inhibitor-bound closed form of the receptor.</p>\n\n<p>This is one part of a multi-target screen emphasising the main protease (Mrpo), the RNA-dependent-RNA-polymerase (RdRp) and human ACE2. The other datasets can found at the following locations:</p>\n\n<ul>\n\t<li><a href=\"https://zenodo.org/record/3929438\">Mpro: Shape-based assay</a></li>\n\t<li><a href=\"https://zenodo.org/record/3929446\">Mpro: Pharmacophore-based assay</a></li>\n\t<li><a href=\"https://zenodo.org/record/3929449\">RdRp</a></li>\n</ul>\n\n<p>More information about this screen along with interactive visualisations of the top compounds can be found on our website <a href=\"https://bonvinlab.org/covid/\">bonvinlab.org</a>.</p>"
  }
}
184
7
views
downloads
All versions This version
Views 184184
Downloads 77
Data volume 165.6 GB165.6 GB
Unique views 153153
Unique downloads 66

Share

Cite as