Book section Open Access

Network Aggregation to Enhance Results Derived from Multiple Analytics

Duroux Diane; Climente-González Héctor; Wienbrandt Lars; Van Steen Kristel


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200703125919.0</controlfield>
  <controlfield tag="001">3929189</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institut Curie, PSL Research University, F-75005 Paris, France; INSERM, U900, F-75005 Paris, France; MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France;</subfield>
    <subfield code="a">Climente-González Héctor</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany</subfield>
    <subfield code="a">Wienbrandt Lars</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">BIO3 - GIGA-R Medical Genomics, University of Liège, Liège, Belgium; WELBIO researcher, University of Liège, Liège, Belgium</subfield>
    <subfield code="a">Van Steen Kristel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">574287</subfield>
    <subfield code="z">md5:9e83783c52d6af97543fd4d35485155b</subfield>
    <subfield code="u">https://zenodo.org/record/3929189/files/NetworkAggregation.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-mlfpm</subfield>
    <subfield code="o">oai:zenodo.org:3929189</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">BIO3 - GIGA-R Medical Genomics, University of Liège, Liège, Belgium;</subfield>
    <subfield code="a">Duroux Diane</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Network Aggregation to Enhance Results Derived from Multiple Analytics</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-mlfpm</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">813533</subfield>
    <subfield code="a">Machine Learning Frontiers in Precision Medicine</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The more complex data are, the higher the number of possibilities to extract partial information from those data. These possibilities arise by adopting different analytic approaches. The heterogeneity among these approaches and in particular the heterogeneity in results they produce are challenging for follow-up studies, including replication, validation and translational studies. Furthermore, they complicate the interpretation of findings with wide-spread relevance. Here, we take the example of statistical epistasis networks derived from genome-wide association studies with single nucleotide polymorphisms as nodes. Even though we are only dealing with a single data type, the epistasis detection problem suffers from many pitfalls, such as the wide variety of analytic tools to detect them, each highlighting different aspects of epistasis and exhibiting different properties in maintaining false positive control. To reconcile different network views to the same problem, we considered 3 network aggregation methods and discussed their performance in the context of epistasis network aggregation. We furthermore applied a latent class method as best performer to real-life data on inflammatory bowel disease (IBD) and highlighted its benefits to increase our understanding about IBD underlying genetic architectures.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="b">Springer, Cham</subfield>
    <subfield code="z">978-3-030-49161-1</subfield>
    <subfield code="t">Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, vol 583.</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-030-49161-1_12</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">section</subfield>
  </datafield>
</record>
69
50
views
downloads
Views 69
Downloads 50
Data volume 28.7 MB
Unique views 63
Unique downloads 48

Share

Cite as