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Abstract— The performance of an anaerobic moving bed 

biofilm reactor (MBBR) containing AnoxKaldnesTM K5 model for 

the treatment of raw acid mine drainage (AMD) was investigated 

for the reduction of sulphate and chemical oxygen demand using a 

consortium of sulphate reducing bacteria (SRB) dominated by 

Proteobacteria. The MBBR was enriched for 4 weeks, followed by 

introduction of raw AMD and sampling at intervals for 7 weeks. 

Maximum removal efficiency of COD was 99 % followed by 75 % 

sulphate reduction. The results showed that the bio-carrier is more 

suited for the COD reduction.  

 

Keywords— Acid mine drainage; Chemical oxygen demand; Heavy 

metals; moving bed biofilm reactor; Sulphate reducing bacteria.  

I. INTRODUCTION 

The rapid development of minerals industry in South Africa 

has led to increase in volumes of mining wastewater containing 

sulphate and heavy metals generated [1-5]. The discharge of 

poorly treated and/or untreated wastewater is a major threat to 

the water bodies and as a result, the human health and the 

environment at large are susceptible to diverse diseases and 

sickness. The acid mine drainage (AMD) generated causes 

acidification and contamination of both surface and 

underground water with heavy metals [6-11]. The presence of 

sulphate increases the salinity of receiving water bodies and 

consequently reduces the availability of potable water [12]. 

Recently, anaerobic biological technology has been deployed 

for the treatment of sulphate containing wastewater, at both 

laboratory and full-scale such as Thiopaq® technology [13]. 

During anaerobic biological sulphate reduction, sulphide and 

bicarbonate are produced by sulphate reducing bacteria (SRB) 

in the presence of an appropriate electron donor and carbon 

source. The bicarbonate neutralises the acidity while dissolved 

metals are precipitated as metal sulphides, which can be 
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separately removed based on the solubility of different metal 

sulphides at different pH [13, 14].  

In addition to the high concentration of pollutants – sulphate 

and heavy metals in AMD, there is a challenge of high chemical 

oxygen demand (COD) that accompanies the wastewater 

treatment. The high COD can be used up during methanogenic 

activity but this will compete with the carbon source meant for 

SRB proliferation, hence, the need for bio-carrier – a proven 

COD removal technology [15, 16]. The moving-bed biofilm 

reactor (MBBR) is a vastly efficient technology for the 

treatment of wastewater due to its relatively low footprint. The 

prolonged retention time of biomass within the reactors is a 

major feature through bonding of microorganisms onto the 

surface of bio-carriers that are maintained in suspension via 

mechanical stirring (anaerobic) or aeration (aerobic). 

Sequential changes of the attached microbial community will 

lead to the development of an established biofilm [17]. 

Therefore, the objective of this research work was to assess 

the performance of consortium of sulphate reducing bacteria in 

an MBBR, to determine both the sulphate and COD reduction 

rate, under high metal loading conditions. 

II. MATERIALS AND METHODS 

A. AMD Collection, Isolation and Growth Media for SRB 

Acid mine drainage sample was collected from coal mining 

site in Mpumalanga Province, South Africa using standard 

sampling procedure (EPA 2007). The AMD sample was 

screened for the removal of big particles and stored at 4°C. The 

AMD temperature was 20°C with low pH (2.98) and high redox 

potential (229.5 mV). The concentration of metal ions in the 

AMD samples were measured using the inductively coupled 

plasma optical emission spectrometer (ICP-OES) (ICP Expert 

II, Agilent Technologies 720 ICP-OES). A COD and 

Multiparameter Bench Photometer HI 83099 (Hanna 

Instruments Inc., USA) was used to measure both the COD and 

sulphate  concentration in the AMD samples. 

A sterile 500 mL bioreactor containing sterilised 400 mL 

modified Postgate isolation media [18] was inoculated with 

20% (v/v) AMD. The composition of Postgate isolation media 

was (g/L): Na2SO4 1.0; CaCl2. 2H2O 0.1; MgSO4 2.0; KH2PO4 

0.5; NH4Cl 1.0; yeast extract 1.0; ascorbic acid 0.1; 

thioglycollic acid 0.1; FeSO4. 7H2O 0.5; NaCl 26; sodium 

lactate 5 mL; and pH 7-7.5. All reagents were analytical grade. 

The bioreactor was kept in anaerobic conditions for the growth 
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of SRB for 7 days at 35°C till the colour of the media changed to 

blackish grey. Subsequently, 20% (v/v) inoculum containing 

several isolates were transferred into 400 mL Postgate isolation 

media in a new sterile 500 mL bioreactor. The procedure was in 

triplicate. 

 

B. Experimental Set-up 

The anaerobic moving-bed biofilm reactor experiments were 

conducted in a 1.2 L working volume glass reactor fitted with an 

overhead stirrer. The high density polyethylene (HDPE) 

AnoxKaldnes
TM

 K5 bio-carriers were used, which were about 

15% of the working volume. The bio-carrier has a length of 3.5 

mm, diameter of 25 mm and specific surface area of 800 m
2
/m

3
. 

The reactor containing 800 mL Postgate isolation media was 

initiated with 10 % inoculum at 35°C and pH around 7 for 4 

weeks with 70 % of the medium being drawn weekly and 

replaced with fresh Postgate isolation media. The reactor was 

purged with nitrogen gas to displace dissolved oxygen. To 

prevent methanogenic activity, sodium bromoethane sulphonate 

(3.2 g/L) was added to the culture during enrichment (4 weeks). 

After establishing viable microbial population, raw AMD (10 % 

v/v) was introduced to the MBBR operated in continuous mode. 

The MBBR was kept in the continuous mode for 7 weeks and 

sampled at predetermined intervals. The microbial growth was 

observed in a GENESYS
TM

 10S UV-Vis spectrophotometer 

(Thermo Fisher Scientific
TM

, Waltham, MA, USA) based on 

optical density at a wavelength of 600 nm. The control 

experiment was not inoculated with SRB. All measurements 

were in triplicate. 

The removal efficiency was estimated based on the difference 

between the initial and final concentrations as follows: 

 

Where  and  are initial and final concentrations (mg/L) 

in the raw and treated AMD, respectively. 

III. RESULTS AND DISCUSSION 

A. Anaerobic MBBR performance 

The reactor was inoculated with Postgate isolation media for 

4 weeks to achieve sufficient concentration of attached biomass 

in the MBBR. This period is referred to as an enrichment stage, 

during which the microorganisms colonised the bio-carrier at an 

initial loading rate of 426 mg COD/L. At the end of enrichment 

stage, the COD had risen to 1740 mg COD/L. With the 

introduction of raw AMD into the MBBR, COD removal was 

low at the early stage (between 1 – 3 weeks) while the sulphate 

reduction was very high which was a result of inhibition of 

methanogenic activities. However, after 4
th

 week, there was 

consistent increase in COD removal efficiency up to 99% at the 

end of 7
th

 week. This can be traced to the combined effect of 

gradual decrease in available sodium bromoethane sulphonate 

in the reactor which allows methanogenic activity to proceed as 

well as the impact of the bio-carrier [15, 19]. Previous studies 

have shown that anaerobic MBBR plays a major role in the 

COD removal [16, 20]. Chen et al [16] reported a total COD 

removal efficiency of 95% in the treatment of a landfill leachate 

even though there were some fluctuations in the performance of 

the MBBR due to varying operating conditions. Similarly, 

Bassin et al [15] observed above 95% COD removal efficiency 

in the assessment of two different bio-carriers (AnoxKaldnes
TM

 

K1 and Mutag BioChip
TM

). The higher theoretical surface area 

of   AnoxKaldnes
TM

 K5 (800 m
2
/m

3
) compared to 

AnoxKaldnes
TM

 K1 (500 m
2
/m

3
), which provides effective area 

for biofilm growth, may have contributed to the higher COD 

removal observed in this study. In addition, MBBR often offers 

a relatively low amount of suspended solids in the effluent, 

when there is complete mixing of contaminants, sludge and 

biofilm, with less diffusion limitation, which benefits COD 

removal [21]. 

 Fig. 1. Microbial growth with COD and Sulphate reduction in the anaerobic 

MBBR system. 

Figure 1 shows the results of COD and sulphate reduction, 

including the microbial growth. The MBBR showed a 

maximum sulphate reduction efficiency of 75% after 3 weeks of 

continuous operation. The lower sulphate reduction observed 

between 4
th

 to 7
th

 week could be a combined effect of lower 

carbon source and high concentration of heavy metals in raw 

AMD, including increased methanogenic activity, as shown by 

the higher COD reduction. The metagenomics analysis of the 

inoculum showed the dominance of Proteobacteria in the SRB 

as well as a few Firmicutes (our unpublished data). Different 

studies have reported varying results on biological sulphate 

reduction in AMD (70% to 98%), depending on reactor 

configuration and other process parameters. Greben et al [22] 

analysis showed a sulphate reduction of 93% using ethanol as 

carbon source in a single-stage anaerobic reactor while an 

improvement from 27% to 80% sulphate reduction was reported 

after augmentation with SRB consortium in an anaerobic 

biofilm reactor [23]. The higher residual sulphate concentration 

in this study can be attributed to the low reduction rate owing to 

the competition from the heavy metals in the raw AMD, 

including higher initial sulphate (8080 mg/L) and heavy metal 

concentrations in the raw AMD. 

B. Redox potential and pH 

As expected, a sharp drop in pH was observed after 

enrichment stage, when raw AMD at a lower pH was introduced 

into the MBBR, and steadily increased. Conversely, increase in 

redox potential (Eh) was observed due to introduction of AMD 

at a higher Eh into the reactor, and steadily decreased. The pH 

and Eh of the sample from the bioreactor reached 5.23 and 

120.3 mV in 7 weeks, respectively, while it remained constant 
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in the control experiment. The pH and Eh profiles are shown in 

Fig. 2. The steady decrease in Eh and increase in pH was 

suggestive of an acclimatisation period by the SRB consortium 

to the new conditions. Similar increase in pH with decrease in 

Eh were reported in the treatment of AMD by SRB [24,25]. 

 
Fig. 2. Redox potential and pH of the SRB consortium in the 

anaerobic MBBR system. 

C. Heavy metal removal 

The removal efficiency of metal ions in the treated AMD 

sample was measured using the inductively coupled plasma 

optical emission spectrometer (ICP-OES) (ICP Expert II, 

Agilent Technologies 720 ICP-OES) is shown in Fig. 3. The 

results showed significant reduction in concentrations of Al
3+

, 

Co
3+

, Sr
2+

, Mn
2+

, Ca
2+

, Cd
2+

, V
5+

 and Ni
2+

 as 95%, 88%, 88%, 

87%, 78%, 77%, 77% and 73%, respectively, by the SRB 

consortium. This is comparable to those reported by Jong and 

Parry (2003), whose report indicated above 75% removal of 

Ni
2+

 by SRB in an anaerobic packed bed reactor, however, Al
3+

 

and Mg
2+

 remained unchanged in their system. The higher 

heavy metal removal efficiency observed in the MBBR is a 

confirmation of the interaction between the SRB consortium 

and the facultative anaerobic Bacillus cereus as seen in previous 

studies [26,27]. Conversely, the percent reduction of copper and 

magnesium in the AMD was very low; 12% and 14%, 

respectively. The metal removal can be attributed to the 

precipitation of insoluble metal sulphides resulting from the 

sulphides produced by the biological activities of the SRB. 

 
Fig. 3: Metal removal in the anaerobic MBBR system. 

IV. CONCLUSION 

This study showed microbial reduction of sulphate and COD, 

as well as significant precipitation of Al
3+

, Co
3+

, Sr
2+

, Mn
2+

, 

Ca
2+

, Cd
2+

, V
5+

 and Ni
2+

 in raw AMD by a consortium of SRB in 

an anaerobic MBBR containing AnoxKaldnes
TM

 K5 

bio-carriers. After acclimatisation period, the early stage of the 

process showed 75% reduction of sulphate due to inhibition of 

methanogenic activity. The bio-carrier played a major role in 

the removal of COD (99%) due to methanogenesis at the later 

stage of the process. The results indicated that direct feeding of 

raw AMD without pre-neutralisation offers an advantage for in 

situ implementation of AMD treatment in an anaerobic MBBR. 
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