Software Open Access

hipMAGMA v2.0.0

Cade Brown; Ahmad Abdelfattah; Stanimire Tomov; Jack Dongarra


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/7fd1bc90-2524-4bde-8a9c-30f28ba4f43b/icl-magma-dda09490fbae.tar.gz"
      }, 
      "checksum": "md5:4bf8f24ae8d1df1716cfc43442978c2f", 
      "bucket": "7fd1bc90-2524-4bde-8a9c-30f28ba4f43b", 
      "key": "icl-magma-dda09490fbae.tar.gz", 
      "type": "gz", 
      "size": 4375638
    }
  ], 
  "owners": [
    109260
  ], 
  "doi": "10.5281/zenodo.3928667", 
  "stats": {
    "version_unique_downloads": 27.0, 
    "unique_views": 151.0, 
    "views": 165.0, 
    "version_views": 165.0, 
    "unique_downloads": 27.0, 
    "version_unique_views": 151.0, 
    "volume": 533827836.0, 
    "version_downloads": 122.0, 
    "downloads": 122.0, 
    "version_volume": 533827836.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3928667", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3928666", 
    "bucket": "https://zenodo.org/api/files/7fd1bc90-2524-4bde-8a9c-30f28ba4f43b", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3928666.svg", 
    "html": "https://zenodo.org/record/3928667", 
    "latest_html": "https://zenodo.org/record/3928667", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3928667.svg", 
    "latest": "https://zenodo.org/api/records/3928667"
  }, 
  "conceptdoi": "10.5281/zenodo.3928666", 
  "created": "2020-07-02T17:58:45.551695+00:00", 
  "updated": "2020-07-03T00:59:19.367592+00:00", 
  "conceptrecid": "3928666", 
  "revision": 2, 
  "id": 3928667, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3928667", 
    "description": "<p>The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieves the fastest possible time to an accurate solution on heterogeneous architectures, starting with current multicore + multi-GPU systems. To address the complex challenges stemming from these systems&#39; heterogeneity, massive parallelism, and the gap between compute speed and CPU-GPU communication speed, MAGMA&#39;s research is based on the idea that optimal software solutions will themselves have to hybridize, combining the strengths of different algorithms within a single framework. Building on this idea, the goal is to design linear algebra algorithms and frameworks for hybrid multicore and multi-GPU systems that can enable applications to fully exploit the power that each of the hybrid components offers.</p>", 
    "language": "eng", 
    "title": "hipMAGMA v2.0.0", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3928666"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3928667"
          }
        }
      ]
    }, 
    "version": "2.0.0", 
    "keywords": [
      "dense linear algebra", 
      "GPU computing", 
      "linear algebra"
    ], 
    "publication_date": "2020-07-02", 
    "creators": [
      {
        "affiliation": "University of Tennessee", 
        "name": "Cade Brown"
      }, 
      {
        "affiliation": "University of Tennessee", 
        "name": "Ahmad Abdelfattah"
      }, 
      {
        "affiliation": "University of Tennessee", 
        "name": "Stanimire Tomov"
      }, 
      {
        "affiliation": "University of Tennessee", 
        "name": "Jack Dongarra"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3928666", 
        "relation": "isVersionOf"
      }
    ]
  }
}
165
122
views
downloads
All versions This version
Views 165165
Downloads 122122
Data volume 533.8 MB533.8 MB
Unique views 151151
Unique downloads 2727

Share

Cite as