Software Open Access
Cade Brown; Ahmad Abdelfattah; Stanimire Tomov; Jack Dongarra
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3928667</identifier> <creators> <creator> <creatorName>Cade Brown</creatorName> <affiliation>University of Tennessee</affiliation> </creator> <creator> <creatorName>Ahmad Abdelfattah</creatorName> <affiliation>University of Tennessee</affiliation> </creator> <creator> <creatorName>Stanimire Tomov</creatorName> <affiliation>University of Tennessee</affiliation> </creator> <creator> <creatorName>Jack Dongarra</creatorName> <affiliation>University of Tennessee</affiliation> </creator> </creators> <titles> <title>hipMAGMA v2.0.0</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>dense linear algebra</subject> <subject>GPU computing</subject> <subject>linear algebra</subject> </subjects> <dates> <date dateType="Issued">2020-07-02</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Software"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3928667</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3928666</relatedIdentifier> </relatedIdentifiers> <version>2.0.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The goal of the MAGMA project is to create a new generation of linear algebra libraries that achieves the fastest possible time to an accurate solution on heterogeneous architectures, starting with current multicore + multi-GPU systems. To address the complex challenges stemming from these systems&#39; heterogeneity, massive parallelism, and the gap between compute speed and CPU-GPU communication speed, MAGMA&#39;s research is based on the idea that optimal software solutions will themselves have to hybridize, combining the strengths of different algorithms within a single framework. Building on this idea, the goal is to design linear algebra algorithms and frameworks for hybrid multicore and multi-GPU systems that can enable applications to fully exploit the power that each of the hybrid components offers.</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 165 | 165 |
Downloads | 122 | 122 |
Data volume | 533.8 MB | 533.8 MB |
Unique views | 151 | 151 |
Unique downloads | 27 | 27 |