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ABSTRACT

Novelty detection is concerned with identifying test data that differs from the training data of a classifier. In
the case of brain MR images, pathology or imaging artefacts are examples of untrained data. In this proof-of-
principle study, we measure the behaviour of a classifier during the classification of trained labels (i.e. normal
brain tissue). Next, we devise a measure that distinguishes normal classifier behaviour from abnormal behaviour
that occurs in the case of a novelty. This will be evaluated by training a kNN classifier on normal brain tissue,
applying it to images with an untrained pathology (white matter hyperintensities (WMH)), and determine if our
measure is able to identify abnormal classifier behaviour at WMH locations.

For our kNN classifier, behaviour is modelled as the mean, median, or q1 distance to the k nearest points.
Healthy tissue was trained on 15 images; classifier behaviour was trained/tested on 5 images with leave-one-out
cross-validation. For each trained class, we measure the distribution of mean/median/q1 distances to the k
nearest point. Next, for each test voxel, we compute its Z-score with respect to the measured distribution of
its predicted label. We consider a Z-score ≥4 abnormal behaviour of the classifier, having a probability due to
chance of 0.000032.

Our measure identified >90 % of WMH volume and also highlighted other non-trained findings. The latter
being predominantly vessels, cerebral falx, brain mask errors, choroid plexus. This measure is generalizable to
other classifiers and might help in detecting unexpected findings or novelties by measuring classifier behaviour.
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1. INTRODUCTION

Supervised voxel classification is a commonly used technique to segment brain MR images.1–4 The normal human
brain roughly consists of grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In a clinical
setting, brain MR images often show pathologies and imaging artefacts.5 A voxel classifier, trained on normal
tissue, will incorrectly assign one of the trained labels to a voxel containing pathology or an artefact.

A possible solution is to include pathologies in the training data.6–8 However, it is generally hard to acquire
a sufficient number of labelled samples to fill all relevant parts of the classifier feature space.9 Next to this,
unexpected findings, rare pathologies, and imaging artefacts are difficult to train.

Novelty detection tries to identify test data that somehow differs from the training data.10,11 Thus, for a
classifier trained on normal brain tissue, a novelty detection algorithm should identify pathologies, unexpected
findings, and imaging artefacts.
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Figure 1: Example T1 (left) and FLAIR (right) sequence. Note the WMH appearing hypointense on T1 and
hyperintense on FLAIR.

In this proof-of-principle study, we propose a novelty detection algorithm that relies on the behaviour of
a classifier during classification. The behaviour of a classifier is measured during the classification of normal
data. When classifying unknown test data, we determine if the classifier is behaving abnormally (as defined by a
Z-score ≥4 to the measured normal behaviour) and thus encountered a novelty. This approach will be evaluated
with a kNN classifier trained on normal brain tissue and applied to test data with white matter hyperintensities
(WMHs).

2. METHODS AND MATERIALS

2.1 Participants and MRI

Twenty participants (age: 71±4 years, 10 men) were recruited at the University Medical Center Utrecht, Utrecht,
the Netherlands. Participants included patients with diabetes and matched controls, all with varying degrees of
cerebral atrophy and WMH. The study was approved by the medical ethics committee of the University Medical
Center Utrecht and all participants gave written informed consent.12 The data has been previously used in the
MRBrainS13 challenge (for full details, see http://mrbrains.isi.uu.nl/).4

All participants underwent a standardized MR exam on a 3 T Philips Achieva MR scanner using an eight-
channel head coil. The exam included, amongst others, a 3D T1-weighted turbo field echo sequence (TR: 7.9 ms,
TE: 4.5 ms) and a multi-slice fluid–attenuated inversion recovery (FLAIR) sequence (TR: 11 000 ms, TE: 125 ms,
TI: 2800 ms). See figure 1 for an example. Using the elastix toolbox for medical image registration,13 the T1
image were aligned with the FLAIR image of each participant. All images were manually segmented, including
the normal brain tissue and WMH, using a freehand spline drawing tool based on MeVisLab.14,15 The five
participants with the most WMH volume were used for testing; the remaining fifteen participants were used to
train the classifier.

2.2 Procedure

We trained a kNN classifier on the normal brain anatomy of the fifteen training participants. An example
simulated kNN feature space, with just the two intensity features, is shown in Figure 2a.
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Figure 2: Simulated example feature space (a) showing T1 and FLAIR intensity features, and the labels for
CSF (blue squares), GM (green diamonds), WM (red circles), and WMH (yellow triangles). A kNN classifier is
trained on CSF+GM+WM and not on WMH, which is the novelty. When classifying an unknown voxel (yellow
star) whose true label is GM (b), the k nearest neighbours are within a certain radius (yellow circle). When
classifying an unknown voxel whose true label is WMH (c), the k nearest neighbours in the trained data are
further away. The required search radius for trained classes can be learned and novelties can than be identified
because of an exceptionally large search radius.

Figure 3: Learned distribution of m̄ for normal WM. If an unknown voxel is labelled as WM, its m̄ is compared
to this distribution. If the Z-score ≥ 4, the unknown voxel is considered a novelty.

The classifier searches for the k nearest neighbours, reports their labels, and from that derives a prediction
for the test voxel. When the true label of a test voxel is amongst the training data, the search radius in feature
space to the k neighbours is much smaller than when the test voxel is a novelty (e.g. a WMH, see Figure 2).

Hence, the behaviour of the kNN classifier (modelled by the search radius) might be used for novelty detection.
We inspect three different measures M : the mean (m̄), median (m̃), and Q1 (mean in the first quartile) distance
to the k nearest neighbours.

The five test cases are used in a leave-one-out cross-validation, where M is learned on four cases and next
applied on the remaining case. Each normal voxel in the four cases (i.e. each non-WMH voxel) is classified by
the kNN classifier and the value for M is recorded per true label. This results in a (normal) distribution of M ;
for example in Figure 3, where we show the mean (m̄) search radius for WM.

Next, all voxels in the remaining test case are classified. For each voxel and its predicted label, we compare



Table 1: The percentage of identified WMH volumes having a Z-score ≥ 4.

M Identified WMH volume

m̄ 91.03 %
m̃ 90.64 %
Q1 91.64 %

the behaviour of the classifier as measured by M to the learned distribution of M . For example, if a test-voxel
is assigned the label WM, we compare the mean (m̄) search radius against the distribution of m̄ for true WM
voxels (given in Figure 3). This comparison is done by computing the Z-score: z = X−µ

σ , where X is M for the
test-voxel, µ is the average M of its predicted label and σ the corresponding standard deviation.

The Z-score is the number of standard deviations a sample is away from its mean. A Z-score ≥ 4 indicates
abnormal behaviour of the classifier, having a probability due to chance of 0.000032. So if a voxel has a Z-score
≥ 4 for the behaviour of the classifier measured by M , we have detected a novelty.

2.3 Implementation

2.3.1 Features

The T1 and FLAIR image intensities were rescaled to [0, 1], with the 0.5th and 99.5th percentile of the histogram
as lower/upper bound, respectively. Spatial information was obtained by transforming the MNI152 atlas to
the image with an affine registration, using elastix13,16 Features for the classifier included: T1 and FLAIR
intensities, MNI x/y/z spatial location normalized to [0, 1], T1 and FLAIR smoothed with a 2D Gaussian kernel
of sigma = 1.0 mm.

2.3.2 Classifier

We used the kNN classifier implemented in scikit-learn,17 with k = 50 and all other settings were kept default.
For the fifteen training images, 10 % of the normal tissue was randomly selected for training.

2.4 Evaluation

In a leave-one-out fashion, the label-specific values for M were measured from four participants. The remaining
participant was classified and a Z-score map was computed. See Figure 4 for an example. Next, we recorded
the volume of WMH that was identified on the Z-score map (i.e. individual WMHs having a cluster of at least
five voxels with a Z-score ≥ 4). Finally, we visually examined other clusters in the Z-score map ≥ 4, to identify
other possible novelties.

3. RESULTS

The identified WMH volume percentage is given in Table 1. Overall, >90 % of the WMHs had a Z-score ≥ 4
after classification by the classifier trained on normal tissue.

Besides WMH, other regions with a Z-score ≥ 4 were identified. Most errors occurred on the edge of the
used brain mask, where non-brain structures were included in the mask, either fully or as partial volume voxels.
Next, some normal anatomy that was not present in the training data (given the used features) was identified,
including: vessels in the sulci, vessels outside the brain tissue (e.g. venous sinuses), the choroid plexus, cerebral
falx, tentorium cerebelli, and calcium or increased iron contents in the basal ganglia. Some motion artefacts were
identified. For one subject, the applied image intensity normalization was not successful. The normal appearing
white matter had different intensity values compared to the training data, resulting in some voxels having a
Z-score ≥ 4. An example Z-score map is shown in Figure 4.
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Figure 4: left a FLAIR image, right the Z-score map with regions ≥ 4 outlined in red. In the Z-score map, the
non-outlined WMH in the right-bottom-corner was identified on a subsequent slice. Additional findings at the
border of the brain indicate an oversegmentation of the used brain mask.

4. DISCUSSION

The presented method is able to identify >90 % of the WMH volume in brain MR images, with a kNN clas-
sifier that is not trained on WMH. To our knowledge, this is one of the first applications of novelty detection
in medical image analysis. This approach circumvents one of the largest issues in WMH segmentation: the
underrepresentation of WMH examples in the training data.

A limitation of the presented approach is that novelty detection is aspecific. It detects all locations in an
image that have a Z-score ≥ 4, which are not necessarily WMH. In our evaluation, we chose to measure the
recovered WMH volume and provide a description of the other findings in the images. For a fully automated
application of this method, additional image analysis is needed to identify the WMHs amongst the novelties and
censor the other findings.

Another limitation is the additional training stage, to create the distribution of M on normal data. This
increases the required training time significantly. However, this can be performed offline and does not influence
the computation time for test images.

The potential applications of the proposed method are diverse. Besides detecting WMH, the method can be
employed to detect various abnormalities in brain MR images, e.g. tumours or infarctions. Future work will
explore these applications. Furthermore, novelties can be classified or clustered into known pathologies based on
characteristics derived from dedicated training data or knowledge from literature.

5. CONCLUSIONS

Computing Z-Score maps of classifier behaviour helps to identify unexpected findings in brain MR images. This
work presents a supervised way of novelty detection, where classifier behaviour on normal tissue is measured



from training data. For a kNN classifier, measures derived from the required search radius and distances to the
k nearest neighbours have proven to be effective in this study. The proposed technique and measures seem to
be generalizable to other classifiers, hence enabling a broad range of applications.
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