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Introduction

Machine learning has a rich history in structural bioinformatics, and modern approaches such

as deep learning are already revolutionizing our knowledge of the subtle relationships between

biomolecular sequence, structure, function & evolution. The advances are enabled by large vol-

umes of data that, ideally, are intelligible or manipulable. In structural bioinformatics, such data

often relate, directly or indirectly, to protein 3D structures. A significant & recurring challenge

concerns the creation of large, high-quality, openly accessible, and reproducible datasets that can

be used for specific training/benchmarking tasks, e.g. in predictive modeling projects. Here, we

report a protein biophysical and evolutionary featurization and data-processing pipeline that we

recently developed and deployed (both in the cloud and on local HPC resources) in order to sys-

tematically and reproducibly create comprehensive, superfamily-level domain databases for deep

learning tasks (e.g., for structure classification & predicting domain interactions). While motivated

by specific problems, we believe this robust computational toolkit could be of broader utility for

other structure-related workflows (i.e., as a community-wide resource), particularly as arise at the

intersection of deep learning and structural bioinformatics.

Setup & Deployment: Mapping Structural Info ⇒ Tasks

Toil [1] is a Python-based workflow management system (WMS) that enables one to auto-

deploy workflows in the cloud or on local HPC resources, thus improving the reproducibility of

computational pipelines. Each Toil job has child jobs and follow-on jobs, enabling the construc-

tion of complex MapReduce-like pipelines. Workflows can be built in Python or the Common

Workflow Language.

AWorkflow Based on PDB Files

The workflow systemically maps PDB files to jobs to run a given function.

AWorkflow Based on CATH Domains

One job is created for each entry in the CATH [2] hierarchy, with child jobs spawned for sub-

sidiary levels in the hierarchy. Once the workflow reaches a job for each individual domain

(or specified level), it will run a given, user-provisioned function. Image and counts obtained from

http://cathdb.info.

AWorkflow Based on Protein Pairs

Biological Protein•Protein Interactions

(PPI) are extracted from EPPIC [3]

and each pair of chains is systemically

mapped to jobs to run a given function.

Right: Biological PPI from 1KQ2 in EPPIC [3]

Use Case 1: Protein Structure Preparation

Structural bioinformaticsworkflows generally beginwith a data-engineering task. Here, rawCATH

domain structures are downloaded from the CATHAPI and cleaned (select first model and correct

chain, remove altLocs and HETATMS), and then modified via the following stages:

?

1. Model missing residues
using MODELLER [4] (if
necessary). (PDB ID: 1KQ2)

?

2. Correct rotamers if atoms
are missing with SCWRL [5] (if
necessary)

3. Add hydrogens and

minimize structure with

Pdb2pqr. [6]

Use Case 2: Calculate Biophysical Properties

Our toolkit enables one to efficiently and quickly compute biophysical properties for all atoms &

residues in a structural dataset (e.g. from PDB or CATH). Some properties that we compute are:

PDB ID: 1KQ2

Atom Type (AutoDock)

Partial Charge and Electrostatics (APBS [6])

Concavity (CX [7])

Hydrophobicity (Kyte-Doolittle, Octanol, Biological)

Accessible Surface Area (DSSP [8])

Secondary Structure (DSSP [8])

Evolutionary Conservation (EPPIC [3])

Some properties are computed at the residue level and mapped to each atom in the residue

(e.g., hydrophobicity). For some features, residue-level values are calculated by combining atomic

quantities, via various summation or averaging operations applied to the properties.

Use Case 3: Create & Validate Protein Complexes

With over 430,000 domains in the CATH database, it becomes challenging to perform all vs. all

domain docking in reasonable time. Our workflow toolkit allows for hundreds of simultaneous

docking & validation runs. PPIs can be mapped to Domain•Domain Interactions (DDIs) based on

CATH, which can be created or refined using HADDOCK & CNS. Finally, we validate the DDI

complexes via the following various metrics:

PDB ID: 1KQ2

Single Complex

Bured Surface Area

Radius of Gyration

ZRank Score [9]

CNS Energy

HADDOCK Score [10]

Binding Affinity (PRODIGY [11])

Original vs. Refined

Interface & Ligand RMSD

TMScore (MMAlign)

Fraction of Common Contacts

We can also use this workflow to cluster interfaces, e.g. with tools such as MaxCluster, to create

train/test splits. Binding sites can be similar even without structural similarity across a full 3D

domain, so we cluster on binding site residues rather than the entire domain structure.

IllustrativeWorkflows
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For both workflows, we need to 'clean' CATH domain PDB files, calculate biophysical features for each atom, and

split into clusters to avoid train/test overlap. Feature selection is first performed using Pearson correlations (filter)

and then performed again after model training by comparing AUC scores for each feature (embed).

Because our toolkit runs executable code via virtualization (as Docker containers), workflows are

readily extensible. New tools can be easily added to the workflow as Docker containers. We have

also dockerized many common bioinformatics tools (https://hub.docker.com/u/edraizen).

Conclusion

We created a structural bioinformatics toolkit to perform large-scale, reproducible analyses

of thousands of structures simultaneously that runs on any cloud resource or HPC

Using the workflows, we prepared all CATH domain structures and calculated biophysical

features for all atoms for use in deep learning models

Biological PPI have been mapped to CATH domains; DDI validation still in progress

We plan to make datasets available as an API and accessible via PyTorch DataLoaders
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