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EXTENDED ABSTRACT  

Water loss in distribution systems has been a main issue, not only is a waste of water resource and 

money, but it is also a potential health risk since pollutants could get into pipes through cracks. 

Leakage detection and management has thus become a critical work for utility companies to reduce 

water loss. One common practice is based on district metering area (DMA) and night minimum flow 

(NMF) theories. The NMF is considered stable for a certain part of network, so changes of NMF 

indicates occurrences of potential leakage in this DMA. Concerned workers could then isolate the 

exact leaking location by acoustic equipment or get precise geographic information from acoustic 

monitors installed in network. As the digitalization of urban infrastructures proceeds, SCADA system 

has been widely used in urban water distribution network management, providing numerous data for 

analysis. Data-driven models for leakage detection have been proposed since then. Mounce et al 

(2010) proposed an artificial neural network combined with a fuzzy inference system to detect pipe 

bursts. Ye & Fenner (2011) proposed an adaptive Kalman filtering method which is more efficient. 

Other methods such as Bayesian inference system and Golden Section method are also proposed by 

researchers and engineers. Inspired by such data-driven methods, a new approach for leakage 

detection is proposed in this abstract, applying data mining models and numerical hydraulic 

simulations. Data mining models are trained by pressure data, which contains measured SCADA data 

and hydraulic simulated data. Trained data mining model could detect a certain area where potential 

leakage exists. Hydraulic simulations are then run by EPANET to simulate leakage events. Genetic 

algorithm is used to optimize the loss function between simulated results and measured data to find 

the leakage location and flowrate which matches most. The proposed approach is applied to a 

hypothesis WDN “L-Town” to detect and isolate the leakage events in 2018 and 2019. The results 

show that leakage events of 2018 revealed by the proposed approach are highly matched with the 

actual leakage report provided by “L-Town” with respect to location and time. The detected leakage 

events of 2019 will be compared with the actual events once the 2019 leakage report is accessible. 

1. Methodology 

1.1 Hydraulic Model Calibration 

In order to represent the real-world water distribution network, the mathematical hydraulic model 

should be calibrated. Typically, parameters to be calibrated include pipe roughness, effective pipe 

diameter, base demand at nodes, demand patterns of each category, etc. It could be extremely 

resource-consuming since the dimension of parameters could increase exponentially as the network 

growing larger. Provided with the network model, the demand pattern of each demand category is 

first checked and defined. Then seasonality adjustment factors are determined by analyzing the actual 

demand data. Finally, a genetic algorithm is applied to calibrate uncertain parameters such as pipe 

roughness, effective diameter and base demand, which are hard to be determined by simple analysis 

of SCADA data. 

The SCADA data contains demands metered readings from 82 AMRs in Area C, such data of 2018 

is used for defining patterns of residential, commercial and industrial users. Among all 82 AMRs, 71 

AMRs’ data are used for defining residential demand pattern, three for defining commercial pattern, 

and four for defining unique demand pattern of each industrial user. The multiplier at each time step 

is calculated as Multiplierc,t =
∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑐,𝑛,𝑡

𝑁
𝑛=1

∑ ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑐,𝑛,𝑡
𝑁
𝑛=1

𝑇
𝑡=1

 . Where 𝐷𝑒𝑚𝑎𝑛𝑑𝑐,𝑛,𝑡 is the measured demand of 

category c by AMR n at time step t, N is the total number of AMRs of category c, T is the total number 

of time steps. 
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Figure 1 Defined demand patterns for different user categories 

As shown in Figure 1, defined commercial and residential demand patterns basically follow a daily 

routine. Four industrial users have their own patterns, Industry 2 and Industry 4 have a seven-day 

pattern, Industry 1 is better described by a 13-day pattern, and Industry 3 is described by a 12-day 

pattern. All defined patterns have a time interval of 5 minutes. 

Water consumption varies not only on a daily or weekly basis, but also on a monthly basis. 

Seasonality of demand is an important factor to be taken into consideration. Table 1 shows the average 

5-minute demand of each category in different months in 2018. Such seasonality factors will be 

considered respectively for simulation of different months.  
Table 1 Demand Seasonality of Each Category 

 
While demand patterns and seasonality can be determined by analysis of AMR demand data, some 

model parameters remain uncertain and hard to analyze, such as pipe roughness, effective diameter 

and nodal base demand. As suggested by the utility company of “L-Town”, all these parameters could 

have no more than 10% difference of the nominal values. Genetic algorithm is used to optimize this 

problem. 
Variables: 𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑟 , 𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑐 , 𝐶𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 , 𝐶𝐷 

Constraints: 𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑟 , 𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑐 , 𝐶𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝑖𝑛 [0.9, 1.1], 𝐶𝐷 𝑖𝑛 [0.9, 1] 

Objective Function: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑜𝑠𝑠 =  𝑚𝑖𝑛 
∑ ∑ (𝑃𝑡,𝑖−𝑃𝑡,𝑖,0)

2𝑁
𝑛=1

𝑇
𝑡=1

𝑁∙𝑇
 

Where 𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑟  and 𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑐  represent demand variation coefficients of residential and 

commercial users; 𝐶𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠  and 𝐶𝐷  represents variation coefficients of pipe roughness and 

effective diameter. 𝑃𝑡,𝑖,0 is the measured pressure at sensors, 𝑃𝑡,𝑖 is the calculated pressure; N and 

T are the total sensor number and time steps considered in calibration. The effective diameter cannot 

be greater than its physical size, thus 𝐶𝐷 cannot exceed 1. Other hydraulic constraints are satisfied 

automatically by EPANET engine. 

The first two-week data of 2018 measured pressure are selected as the calibration reference. The 

defined patterns of each user category and demand seasonality of January are set in the hydraulic 

model prior to GA optimization. The results of two GA optimizations are listed as follows. Each GA 

optimization has 30 and 50 population respectively, and both have 30 generations. The results of Opt. 

1 are used as the calibrated parameters of hydraulic model. 

 

 

 

 

 

 

 
Residential 

 
Commercial 

 
Industry 1 

 
Industry 2 

 
Industry 3 

 
Industry 4 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Avg. 5-minute 

Demand
151.6 159.8 167.9 170.4 178.3 190.1 195 187.1 180.2 171.4 171.1 160

Annual Avg. 5-

minute Demand

Seasonality 

Factor
0.87 0.92 0.97 0.98 1.03 1.09 1.12 1.08 1.04 0.99 0.99 0.92

Avg. 5-minute 

Demand
218 209.3 229.1 239.3 259.3 253.2 275.5 259.6 275.5 271.5 263.1 236.3

Annual Avg. 5-

minute Demand

Seasonality 

Factor
0.87 0.84 0.92 0.96 1.04 1.02 1.1 1.04 1.1 1.09 1.05 0.95

Avg. 5-minute 

Demand
597.8 645 630 648.6 640.2 656 732.8 708.4 610.7 585.8 549.3 542.8

Annual Avg. 5-

minute Demand

Seasonality 

Factor
0.95 1.03 1 1.03 1.02 1.04 1.16 1.13 0.97 0.93 0.87 0.86

Avg. 5-minute 

Demand
1340 1430 1506 1471 1512 1538 1668 1659 1368 1336 1279 1214

Annual Avg. 5-

minute Demand

Seasonality 

Factor
0.93 0.991 1.04 1.02 1.05 1.07 1.155 1.15 0.95 0.93 0.89 0.84

Avg. 5-minute 

Demand
1698 1860 1931 1811 1763 2083 2182 1942 1826 1642 1694 1625

Annual Avg. 5-

minute Demand

Seasonality 

Factor
0.93 1.01 1.05 0.99 0.96 1.13 1.19 1.06 0.99 0.89 0.92 0.89

Avg. 5-minute 

Demand
33.79 35.56 37.15 35.79 38.04 38.71 41.62 41.37 33.55 33.88 31.97 29.52

Annul Avg 5-

minute Demand

Seasonality 

Factor
0.94 0.99 1.03 1 1.06 1.08 1.16 1.15 0.93 0.94 0.89 0.82

1835.34

35.93Industry 4

Residential 173.6474611

Commerical

Industry 1

Industry 2

Industry 3

249.3677

629.02

1443.87
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Table 2 Calibration results of GA optimization 
 𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑟  𝐶𝑑𝑒𝑚𝑎𝑛𝑑,𝑐 , 𝐶𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝐶𝐷 Loss 

Opt. 1 (30 pop.) 1.082 1.015 0.983 1.027 0.0144 

Opt. 2 (50 pop.) 1.074 1.09 0.997 1.011 0.0143 

 

 
Figure 2 Optimization losses of each generation 

1.2 Data Mining Classification Model 

The purpose of data mining is to find the potential leaking area based on the pressure data of the 

network. Machine learning classification models are constructed to learn pressure change 

characteristics of each area, and the leakage category is identified from the pressure situation at each 

moment by the model. LightGBM and LSTM are selected to achieve the classification goal.  

In order to build the training dataset of the classification model, labels with leakage area’s sensor ID 

(The column number of each monitoring sensor in the table) or no leakage (marked as 0) are marked 

at each time step. The calibrated hydraulic model is used to simulate numerous leakage events with 

WNTR, ensuring every leakage condition is recorded. The simulated results and 2018 measured 

SCADA data are then combined as the training and testing dataset. Firstly, the difference between 

the pressure value P and the referential value of the current monitoring point is extracted as ΔPt = Pt 

- [0.95*(Pmax - Pmin) + Pmin)]. Then, a 1-hour average pressure deficit at each moment of each sensor is 

extracted as the pressure feature. The sample balance of the dataset is then adjusted to ensure all types 

of leakage situations are learned equally by the model. At last, the dataset is scaled to a certain range 

with the same scale to ensure that various types of feature values have the same weight, the 

MinMaxScaler is used here as a scaler. 

1.3 Leakage Isolation 

Given the predicted results from data classification models, a genetic algorithm-based leakage 

isolation model is applied. Leakage events are simulated iteratively in EPANET and pressure results 

are then compared with the measured data, the most matched simulation indicates the possible leakage 

event in reality. The optimization problem is described as follows. 
Variables: 𝐿𝑁𝑖  , 𝐾𝑖  

Constraints: 𝐾𝑖  𝑖𝑛 [0, 𝐾max], 𝑃𝑖 > 0, 𝑁𝐿𝑑𝑢𝑝 = 0 

Where 𝐿𝑁𝑖  is the index for leakage node i; 𝐾𝑖  is the emitter coefficient for leakage node i, which 

is used to simulate leakages in EPANET; 𝐾𝑚𝑎𝑥  is the maximum emitter coefficient; 𝑃𝑖  is the 

pressure at leakage node i; 𝑁𝐿𝑑𝑢𝑝 is the number of the duplicated nodes identified as leakages by 

one simulation, 

Objective Function: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝐿𝑁𝑖  , 𝐾𝑖 ) =  𝑚𝑖𝑛 ∑

∑ [
𝐻𝑛(𝑡)

𝑆 −𝐻𝑛(𝑡)
𝑂

𝐻𝑛(𝑡)
𝑂 ]2𝑁

𝑛=1

𝑁

𝑇
𝑡=1  

where 𝐻𝑛(𝑡)
𝑂  and 𝐻𝑛(𝑡)

𝑆  are the observed head and simulated head at junction n at time step t; N is 

the number of observed head. 

A potential leakage event is represented as the index of leakage node with a positive emitter 

coefficient. Binary code is used for encoding the two variables that the node ID is designated as a 
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node index and the emitter coefficient is encoded with a value between zero and the prescribed 

maximum value with a specified increment. By applying such scheme, the maximum number of 

leakage nodes is specified and does not have to be the same as the total number of nodes. The 

optimized number of leakage nodes, where the calculated emitter coefficients are greater than zero, 

should be less than the specified maximum number of leakage nodes to be detected. Otherwise, and 

the model should be re-run for leakage detection. 

2. Results and Discussions 

Since the data volume of hydraulic simulations is much larger than the real data volume in 2018, 20% 

of the 2018 data is used as the validation set, the remaining part and hydraulic simulation data are 

combined as the training set, ensuring that the model can learn the measured data better. The two 

models are trained separately, and the model parameters and model structure are adjusted and 

optimized according to the test results. The training and testing loss of these two models are shown 

in Figure 3. The accuracies of LSTM and LightGBM are 95.85% and 97.27%, respectively. The 

predicted leakage time periods and leakage area’s sensor ID of possible leakage events in 2018 are 

list in Table 3, these results are used for leakage isolation algorithm.  

 
Figure 3 Model loss results of LSTM (left) and LightGBM (right) 

Table 3 2018 Real Leakage Repair Time VS. Predicted Leakage Time 

Leakage area sensor 

ID 

Leakage Repair Time 

(Reported) 

Leakage Repair Time 

(Predict) 

Leakage Start Time 

(Predict) 

n144 2018/4/2 11:40 2018/4/2 11:50 2018/3/5.7:00 

n31 2018/8/12 17:30 2018/8/12 17:45 2018/7/18 9:00 

n188 2018/5/29 21:20 2018/6/1 19:00 2018/5/11 7:00 

n229 2018/3/23 10:25 2018/3/23 10:25 2018/3/5 7:00 

n296 2018/6/12 3:00 2018/6/12 3:10 2018/6/2 6:05 

n410 2018/11/8 20:25 2018/11/8 20:40 2018/10/23 13:35 

n458 2018/2/10 9:20 2018/2/10 9:25 2018/2/1 7:00 

n506 2018/6/2 6:05 2018/6/2 5:45 2018/5/29 21:20 

n644 2018/10/23 13:30 2018/10/23 14:05 2018/10/05 19:00 

n752 2018/9/1 17:10 2018/9/1 17:20 2018/8/12 17:30 

Given the predicted leakage time periods and area, leakage isolation algorithm is applied. The results 

of 2018 are shown in Table 4 and Figure 4. It is shown that each leakage event is well-isolated as the 

detected leaking node locates closely to reported leaking pipe.  
Table 4 The results of leakage isolation for 2018 dataset 

Leakage event  
Predicted leakage  

start time 

Reported leakage 

repair time 

Reported 

leakage pipe 

Leakage isolation 

algorithm results 

1 2018/2/1 7:00 2018/2/10 9:20 p232 n464 

2 2018/3/5 7:00 2018/3/23 10:25 p673 n206 

3 2018/3/5.7:00 2018/4/2 11:40 p461 n490 

4 2018/5/11 7:00 2018/5/29 21.20 p628 n185 

5 2018/5/29 21:20 2018/6/2 6:05 p538 n123 

6 2018/6/2 6:05 2018/6/12 3:00 p538 n736 

7 2018/7/18 9:00 2018/8/12 17:30 p31 n44 

8 2018/8/12 17:30 2018/9/1 17:10 p183 n752 

9 2018/10/05 19:00 2018/10/23 13:35 p158 n658 

10 2018/10/23 13:35 2018/11/08 20:25 p369 n82 
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Figure 4 The results of leakage isolation for 2018 dataset 

Applying the same leakage detection and isolation approach, the results of 2019 are shown in Table 

5, the pipe ID is selected as the nearest pipe connected to the detected leaking node. 
Table 5 The results of leakage detection and isolation for 2019 dataset 

Leakage 

event 
Leakage area sensor ID Leakage start time Leakage repair time 

Leakage isolation 

algorithm results 

1 n506 2019/1/15 23:25 2019/2/1 10:00 P523 

2 n726 2019/1/24 23:55 2019/2/7 10:00 p829 

3 n458 2019/4/22 9:30 2019/5/3 13:40 p430 

4 n613 2019/6/10 9:35 2019/7/18 8:10 p902 

5 n296 2019/8/18 10:00 2019/10/1 7:05 P173 

6 n188 2019/8/25 10:50 2019/9/14 11:00 p133 

 

Keywords: Leakage detection, Leakage isolation, Data mining, Hydraulic simulation, Genetic 

algorithm 

 

SUMMARY 
Water loss due to leakages in water distribution network has been a major issue, it costs not only 

water resource and money but also brings potential water quality problems to the system. Researchers 

and engineers have been working on techniques detecting and isolating leakages in WDN and many 

approaches have been proposed and applied. Nowadays, the digitalization of urban infrastructures 

applies the SCADA in water distribution systems, which brings numerous data for analysis. This 

research proposed a leakage detection and isolation approach for WDN, which could effectively 

accomplish the goal. The hydraulic model is first calibrated by applying genetic algorithm and WNTR 

simulation. The demand pattern and monthly seasonality for each user category are calibrated and 

defined by analyzing AMR data. Uncertain WDN parameters calibration are then done by genetic 

optimization. Two data classification models (LSTM and LightGBM) are then used to learn how 

SCADA data and simulated data (especially pressure data) changes when leakages exist in network. 

The trained models show high accuracy on 2018 dataset and could predict suspicious leakage areas 

and time periods of certain leakages. Given this predicted information, a genetic-algorithm-based 

isolation method is applied to find out the exact leaking node or pipe. Iterative hydraulic leakage 

simulations are run by EPANET engine and the results of each simulation are compared with SCADA 

data. The most matched simulation indicates the simulated leakage event is of high confidence being 

an actual leakage in network. Such detection and isolation approach is applied in L-Town, using 2018 

SCADA data and reported leakage list. All 10 reported leakages in 2018 are detected by data 

classification models and isolated by the isolation algorithm. The predicted leakage locations are 

close to the reported ones, indicating good performances of the proposed approach. The approach is 

then applied to detect and isolate leakages for L-Town in 2019. 


