Poster Open Access

Combining Physics-Based and Data-Driven Modeling for Pressure Prediction in Well Construction

Oney Erge; Eric van Oort


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Oney Erge</dc:creator>
  <dc:creator>Eric van Oort</dc:creator>
  <dc:date>2020-06-24</dc:date>
  <dc:description>This poster introduces a novel framework to combine the physics-based and data-driven modeling, aiming to attain the best features of both approaches for well construction. Gaussian processes, neural networks and deep learning models are trained and executed together with a physics model that is directly derived using the first principles. Then the results are combined through a decision-making algorithm, a hidden Markov model. The approach is tested within the scope of wellbore hydraulics on a dataset from an actual drilling operation. The results suggest the proposed approach has a good potential to allow safer, optimized drilling operations.</dc:description>
  <dc:identifier>https://zenodo.org/record/3906912</dc:identifier>
  <dc:identifier>10.5281/zenodo.3906912</dc:identifier>
  <dc:identifier>oai:zenodo.org:3906912</dc:identifier>
  <dc:language>eng</dc:language>
  <dc:relation>doi:10.5281/zenodo.3906911</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Deep Learning, Machine Learning, Combining Physics-Based Modeling and Data-Driven Modeling, Hydraulics Modeling, Frictional Pressure Loss Modeling.</dc:subject>
  <dc:title>Combining Physics-Based and Data-Driven Modeling for Pressure Prediction in Well Construction</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePoster</dc:type>
  <dc:type>poster</dc:type>
</oai_dc:dc>
180
161
views
downloads
All versions This version
Views 180180
Downloads 161161
Data volume 167.8 MB167.8 MB
Unique views 171171
Unique downloads 147147

Share

Cite as