Report Open Access
BHOWMICK, Subhrajeit; SEIFERT, Klaus
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <controlfield tag="005">20200626075416.0</controlfield> <controlfield tag="001">3906850</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">SEIFERT, Klaus</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1758622</subfield> <subfield code="z">md5:87d34b3d3991759a2d221585680f5e61</subfield> <subfield code="u">https://zenodo.org/record/3906850/files/Cubalytics GmbH.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-06-24</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-battledim2020</subfield> <subfield code="o">oai:zenodo.org:3906850</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">BHOWMICK, Subhrajeit</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Water Leakage Detection and Localization: Anomaly Matrix - A Deterministic Approach</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-battledim2020</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>A deterministic approach towards early detection and localization of pipe leakages based on sensor readings installed across a drinking water distribution network - using a novel method called&nbsp;&ldquo;Anomaly Matrix&rdquo; written in Python.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.3906849</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.3906850</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">report</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 135 | 135 |
Downloads | 101 | 101 |
Data volume | 177.6 MB | 177.6 MB |
Unique views | 116 | 116 |
Unique downloads | 85 | 85 |