There is a newer version of this record available.

Software Open Access

hal9001: The Scalable Highly Adaptive Lasso

Coyle, Jeremy R; Hejazi, Nima S; van der Laan, Mark J


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3905440</identifier>
  <creators>
    <creator>
      <creatorName>Coyle, Jeremy R</creatorName>
      <givenName>Jeremy R</givenName>
      <familyName>Coyle</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9874-6649</nameIdentifier>
      <affiliation>University of California, Berkeley</affiliation>
    </creator>
    <creator>
      <creatorName>Hejazi, Nima S</creatorName>
      <givenName>Nima S</givenName>
      <familyName>Hejazi</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7127-2789</nameIdentifier>
      <affiliation>University of California, Berkeley</affiliation>
    </creator>
    <creator>
      <creatorName>van der Laan, Mark J</creatorName>
      <givenName>Mark J</givenName>
      <familyName>van der Laan</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1432-5511</nameIdentifier>
      <affiliation>University of California, Berkeley</affiliation>
    </creator>
  </creators>
  <titles>
    <title>hal9001: The Scalable Highly Adaptive Lasso</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>machine learning</subject>
    <subject>semiparametric theory</subject>
    <subject>nonparametric estimation</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-06-23</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3905440</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3558313</relatedIdentifier>
  </relatedIdentifiers>
  <version>v0.2.6</version>
  <rightsList>
    <rights rightsURI="https://opensource.org/licenses/GPL-3.0">GNU General Public License v3.0 only</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;A scalable implementation of the highly adaptive lasso algorithm,including routines for constructing sparse matrices of basis functions of the observed data, as well as a custom implementation of Lasso regression tailored to enhance efficiency when the matrix of predictors is composed exclusively of indicator basis functions. For ease of use and increased flexibility, the Lasso fitting routines may invoke code from the glmnet package optionally.&lt;/p&gt;</description>
  </descriptions>
</resource>
213
17
views
downloads
All versions This version
Views 21331
Downloads 171
Data volume 5.2 MB135.4 kB
Unique views 16825
Unique downloads 151

Share

Cite as