Published June 22, 2020 | Version 1.1
Dataset Open

Historical Tropical Cyclone Along-track Potential Intensity (and Derived Quantities) for Six Ocean Basins from Reanalyses

  • 1. Rutgers University
  • 2. Florida State University

Description

Supporting derived data for Shields et al. (2020, GRL).

Derived tropical cyclone potential intensities and associated variables across the North Atlantic (NA), Eastern North Pacific (EP), North Indian (NI), South Indian (SI), South Pacific (SP), and Western North Pacific (WP) ocean basins, from MERRA2, ERA-I, and MERRA2 with SSTs replaced by HadISSTs. NA/WP basins also have potential and observed intensities calculated with NCEP/NCAR and ERA-20C reanalyses over 1950-2016 and 1950-2010, respectively.

All files are netcdf format, organized by basin, with suffixes on data variables to indicate reanalysis:

  • "_m": MERRA2 (Gelaro et al. 2017)
  • "_h": MERRA2-HadISSTs (Rayner et al. 2003)
  • "_e": ERA-I (Dee et al. 2011)
  • "_n": NCEP/NCAR (Kalnay et al. 2016)
  • "_c": ERA-20C (Stickler et al. 2014)

When using this data, please include the citation:

Shannon Shields, Allison Wing, and Daniel M. Gilford, 2020: A Global Analysis of Interannual Variability of Potential and Actual Tropical Cyclone Intensities. Geophys. Res. Lett.

Potential intensities calculated with the Bister and Emanuel (2002) algorithm (pcmin.m) by Kerry Emanuel (revised by Daniel Gilford, Gilford et al. 2019), available freely at: ftp://texmex.mit.edu/pub/emanuel/TCMAX

MERRA2, ERA-I, and MERRA2 with SSTs replaced by HadISSTs calculations were performed by Daniel Gilford; NCEP/NCAR and ERA-20C calculations were performed by Dr. Suzana Camargo (many thanks!).

Please direct any questions or comments to daniel[dot]gilford[at]rutgers[dot]edu.

Files

Files (3.3 MB)

Name Size Download all
md5:f8689a2c32b3cd4e806a7fae08ee62e2
437.2 kB Download
md5:68d3f1b727d6e995fb1f1b712ef29ee5
757.3 kB Download
md5:183396dbcab59c6367ff0622d058da13
437.1 kB Download
md5:995ff5fa5006510f810e56aec8d6f577
437.1 kB Download
md5:450bd5baba4d9cc70a6822a09821beaa
437.1 kB Download
md5:cb7d13b299ad8197dc0b2aefdc1364dd
757.3 kB Download

Additional details

References

  • Stickler, A., and Coauthors, 2014: ERA-CLIM: Historical Surface and Upper-Air Data for Future Reanalyses. Bull. Amer. Meteor. Soc., 95, 1419–1430, https://doi.org/10.1175/BAMS-D-13-00147.1.
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  • Bister, M., and Emanuel, K. A., Low frequency variability of tropical cyclone potential intensity, 1, Interannual to interdecadal variability, J. Geophys. Res., 107( D24), 4801, doi:10.1029/2001JD000776, 2002.
  • Gilford, D. M., S. Solomon, and K. A. Emanuel, 2019: Seasonal Cycles of Along-Track Tropical Cyclone Maximum Intensity. Mon. Wea. Rev., 147, 2417–2432, https://doi.org/10.1175/MWR-D-19-0021.1.
  • Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. ( 2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670, D14.
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1.
  • Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge‐Sanz, B.M., Morcrette, J.‐J., Park, B.‐K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.‐N. and Vitart, F. (2011), The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi:10.1002/qj.828