Conference paper Open Access

Noise-Resilient and Interpretable Epileptic Seizure Detection

Hitchcock Thomas, Anthony; Aminifar, Amir; Atienza, David


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200622221822.0</controlfield>
  <controlfield tag="001">3903314</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">EPFL</subfield>
    <subfield code="a">Aminifar, Amir</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">EPFL</subfield>
    <subfield code="a">Atienza, David</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">244664</subfield>
    <subfield code="z">md5:7aa3e9148048978f42be24d37aec20d9</subfield>
    <subfield code="u">https://zenodo.org/record/3903314/files/EPFL - Noise-Resilient and Interpretable Epileptic Seizure Detection_preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-deephealth</subfield>
    <subfield code="o">oai:zenodo.org:3903314</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">EPFL</subfield>
    <subfield code="a">Hitchcock Thomas, Anthony</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Noise-Resilient and Interpretable Epileptic Seizure Detection</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-deephealth</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825111</subfield>
    <subfield code="a">Deep-Learning and HPC to Boost Biomedical Applications for Health</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">200020_182009</subfield>
    <subfield code="a">ML-edge: Enabling Machine-Learning-Based Health Monitoring in Edge Sensors via Architectural Customization</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Deep convolutional neural networks have recently emerged as a state-of-the art tool in detection of seizures. Such models offer the ability to extract complex nonlinear representations of an electroencephalogram (EEG) signal which can improve accuracy over methods relying on hand-crafted features. However, neural networks are susceptible to confounding artifacts commonly present in EEG signals and are notoriously difficult to interpret. In this work, we present a neural-network based algorithm for seizure detection which leverages recent advances in information theory to construct a signal representation containing the minimal amount of information necessary to discriminate between seizure and normal brain activity. We show our approach automatically learns representations that ignore common signal artifacts and which encode medically relevant information from the raw signal.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3903313</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3903314</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
15
13
views
downloads
All versions This version
Views 1515
Downloads 1313
Data volume 3.2 MB3.2 MB
Unique views 1313
Unique downloads 1212

Share

Cite as