Journal article Open Access

Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud

Forooghifar, Farnaz; Aminifar, Amir; Atienza Alonso, David


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200622221822.0</controlfield>
  <controlfield tag="001">3903306</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">EPFL</subfield>
    <subfield code="a">Aminifar, Amir</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">EPFL</subfield>
    <subfield code="a">Atienza Alonso, David</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1787767</subfield>
    <subfield code="z">md5:d714a3a3cb2efeed81f6b80a8b692e6e</subfield>
    <subfield code="u">https://zenodo.org/record/3903306/files/EPFL - Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud_preprint.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-11-04</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-deephealth</subfield>
    <subfield code="o">oai:zenodo.org:3903306</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">EPFL</subfield>
    <subfield code="a">Forooghifar, Farnaz</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-deephealth</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825111</subfield>
    <subfield code="a">Deep-Learning and HPC to Boost Biomedical Applications for Health</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">785907</subfield>
    <subfield code="a">Human Brain Project Specific Grant Agreement 2</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">200020_182009</subfield>
    <subfield code="a">ML-edge: Enabling Machine-Learning-Based Health Monitoring in Edge Sensors via Architectural Customization</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The integration of wearable devices in humans&amp;#39; daily lives has grown significantly in recent years and still continues to affect different aspects of high-quality life. Thus, ensuring the reliability of the decisions becomes essential in biomedical applications, while representing a major challenge considering battery-powered wearable technologies. Transferring the complex and energy-consuming computations to fogs or clouds can significantly reduce the energy consumption of wearable devices and result in a longer lifetime of these systems with a single battery charge. In this work, we aim to distribute the complex and energy-consuming machine-learning computations between the edge, fog, and cloud, based on the notion of self-awareness that takes into account the complexity and reliability of the algorithm. We also model and analyze the trade-offs in terms of energy consumption, latency, and performance of different Internet of Things (IoT) solutions. We consider the epileptic seizure detection problem as our real-world case study to demonstrate the importance of our proposed self-aware methodology.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TBCAS.2019.2951222</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
13
26
views
downloads
Views 13
Downloads 26
Data volume 46.5 MB
Unique views 11
Unique downloads 26

Share

Cite as