Journal article Open Access
Forooghifar, Farnaz; Aminifar, Amir; Atienza Alonso, David
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/04aa6e9b-8f1f-4705-992c-ffd20a65e17a/EPFL%20-%20Resource-Aware%20Distributed%20Epilepsy%20Monitoring%20Using%20Self-Awareness%20from%20Edge%20to%20Cloud_preprint.pdf" }, "checksum": "md5:d714a3a3cb2efeed81f6b80a8b692e6e", "bucket": "04aa6e9b-8f1f-4705-992c-ffd20a65e17a", "key": "EPFL - Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud_preprint.pdf", "type": "pdf", "size": 1787767 } ], "owners": [ 106795 ], "doi": "10.1109/TBCAS.2019.2951222", "stats": { "version_unique_downloads": 108.0, "unique_views": 57.0, "views": 80.0, "version_views": 80.0, "unique_downloads": 108.0, "version_unique_views": 57.0, "volume": 198442137.0, "version_downloads": 111.0, "downloads": 111.0, "version_volume": 198442137.0 }, "links": { "doi": "https://doi.org/10.1109/TBCAS.2019.2951222", "latest_html": "https://zenodo.org/record/3903306", "bucket": "https://zenodo.org/api/files/04aa6e9b-8f1f-4705-992c-ffd20a65e17a", "badge": "https://zenodo.org/badge/doi/10.1109/TBCAS.2019.2951222.svg", "html": "https://zenodo.org/record/3903306", "latest": "https://zenodo.org/api/records/3903306" }, "created": "2020-06-22T12:29:03.226500+00:00", "updated": "2020-06-22T22:18:22.773342+00:00", "conceptrecid": "3903305", "revision": 3, "id": 3903306, "metadata": { "access_right_category": "success", "doi": "10.1109/TBCAS.2019.2951222", "description": "<p>The integration of wearable devices in humans' daily lives has grown significantly in recent years and still continues to affect different aspects of high-quality life. Thus, ensuring the reliability of the decisions becomes essential in biomedical applications, while representing a major challenge considering battery-powered wearable technologies. Transferring the complex and energy-consuming computations to fogs or clouds can significantly reduce the energy consumption of wearable devices and result in a longer lifetime of these systems with a single battery charge. In this work, we aim to distribute the complex and energy-consuming machine-learning computations between the edge, fog, and cloud, based on the notion of self-awareness that takes into account the complexity and reliability of the algorithm. We also model and analyze the trade-offs in terms of energy consumption, latency, and performance of different Internet of Things (IoT) solutions. We consider the epileptic seizure detection problem as our real-world case study to demonstrate the importance of our proposed self-aware methodology.</p>", "license": { "id": "CC-BY-4.0" }, "title": "Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3903305" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3903306" } } ] }, "grants": [ { "code": "825111", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::825111" }, "title": "Deep-Learning and HPC to Boost Biomedical Applications for Health", "acronym": "DeepHealth", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } }, { "code": "785907", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::785907" }, "title": "Human Brain Project Specific Grant Agreement 2", "acronym": "HBP SGA2", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } }, { "code": "200020_182009", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100001711::200020_182009" }, "title": "ML-edge: Enabling Machine-Learning-Based Health Monitoring in Edge Sensors via Architectural Customization", "acronym": "", "program": "Project funding", "funder": { "doi": "10.13039/501100001711", "acronyms": [], "name": "Schweizerischer Nationalfonds zur F\u00f6rderung der Wissenschaftlichen Forschung", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100001711" } } } ], "communities": [ { "id": "deephealth" } ], "publication_date": "2019-11-04", "creators": [ { "affiliation": "EPFL", "name": "Forooghifar, Farnaz" }, { "affiliation": "EPFL", "name": "Aminifar, Amir" }, { "affiliation": "EPFL", "name": "Atienza Alonso, David" } ], "access_right": "open", "resource_type": { "subtype": "article", "type": "publication", "title": "Journal article" } } }
Views | 80 |
Downloads | 111 |
Data volume | 198.4 MB |
Unique views | 57 |
Unique downloads | 108 |