Journal article Open Access

Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud

Forooghifar, Farnaz; Aminifar, Amir; Atienza Alonso, David


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/04aa6e9b-8f1f-4705-992c-ffd20a65e17a/EPFL%20-%20Resource-Aware%20Distributed%20Epilepsy%20Monitoring%20Using%20Self-Awareness%20from%20Edge%20to%20Cloud_preprint.pdf"
      }, 
      "checksum": "md5:d714a3a3cb2efeed81f6b80a8b692e6e", 
      "bucket": "04aa6e9b-8f1f-4705-992c-ffd20a65e17a", 
      "key": "EPFL - Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud_preprint.pdf", 
      "type": "pdf", 
      "size": 1787767
    }
  ], 
  "owners": [
    106795
  ], 
  "doi": "10.1109/TBCAS.2019.2951222", 
  "stats": {
    "version_unique_downloads": 108.0, 
    "unique_views": 57.0, 
    "views": 80.0, 
    "version_views": 80.0, 
    "unique_downloads": 108.0, 
    "version_unique_views": 57.0, 
    "volume": 198442137.0, 
    "version_downloads": 111.0, 
    "downloads": 111.0, 
    "version_volume": 198442137.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/TBCAS.2019.2951222", 
    "latest_html": "https://zenodo.org/record/3903306", 
    "bucket": "https://zenodo.org/api/files/04aa6e9b-8f1f-4705-992c-ffd20a65e17a", 
    "badge": "https://zenodo.org/badge/doi/10.1109/TBCAS.2019.2951222.svg", 
    "html": "https://zenodo.org/record/3903306", 
    "latest": "https://zenodo.org/api/records/3903306"
  }, 
  "created": "2020-06-22T12:29:03.226500+00:00", 
  "updated": "2020-06-22T22:18:22.773342+00:00", 
  "conceptrecid": "3903305", 
  "revision": 3, 
  "id": 3903306, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/TBCAS.2019.2951222", 
    "description": "<p>The integration of wearable devices in humans&#39; daily lives has grown significantly in recent years and still continues to affect different aspects of high-quality life. Thus, ensuring the reliability of the decisions becomes essential in biomedical applications, while representing a major challenge considering battery-powered wearable technologies. Transferring the complex and energy-consuming computations to fogs or clouds can significantly reduce the energy consumption of wearable devices and result in a longer lifetime of these systems with a single battery charge. In this work, we aim to distribute the complex and energy-consuming machine-learning computations between the edge, fog, and cloud, based on the notion of self-awareness that takes into account the complexity and reliability of the algorithm. We also model and analyze the trade-offs in terms of energy consumption, latency, and performance of different Internet of Things (IoT) solutions. We consider the epileptic seizure detection problem as our real-world case study to demonstrate the importance of our proposed self-aware methodology.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3903305"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3903306"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "825111", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::825111"
        }, 
        "title": "Deep-Learning and HPC to Boost Biomedical Applications for Health", 
        "acronym": "DeepHealth", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "785907", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::785907"
        }, 
        "title": "Human Brain Project Specific Grant Agreement 2", 
        "acronym": "HBP SGA2", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "200020_182009", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100001711::200020_182009"
        }, 
        "title": "ML-edge: Enabling Machine-Learning-Based Health Monitoring in Edge Sensors via Architectural Customization", 
        "acronym": "", 
        "program": "Project funding", 
        "funder": {
          "doi": "10.13039/501100001711", 
          "acronyms": [], 
          "name": "Schweizerischer Nationalfonds zur F\u00f6rderung der Wissenschaftlichen Forschung", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100001711"
          }
        }
      }
    ], 
    "communities": [
      {
        "id": "deephealth"
      }
    ], 
    "publication_date": "2019-11-04", 
    "creators": [
      {
        "affiliation": "EPFL", 
        "name": "Forooghifar, Farnaz"
      }, 
      {
        "affiliation": "EPFL", 
        "name": "Aminifar, Amir"
      }, 
      {
        "affiliation": "EPFL", 
        "name": "Atienza Alonso, David"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
80
111
views
downloads
Views 80
Downloads 111
Data volume 198.4 MB
Unique views 57
Unique downloads 108

Share

Cite as