Journal article Open Access
Forooghifar, Farnaz; Aminifar, Amir; Atienza Alonso, David
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/3903306</identifier> <creators> <creator> <creatorName>Forooghifar, Farnaz</creatorName> <givenName>Farnaz</givenName> <familyName>Forooghifar</familyName> <affiliation>EPFL</affiliation> </creator> <creator> <creatorName>Aminifar, Amir</creatorName> <givenName>Amir</givenName> <familyName>Aminifar</familyName> <affiliation>EPFL</affiliation> </creator> <creator> <creatorName>Atienza Alonso, David</creatorName> <givenName>David</givenName> <familyName>Atienza Alonso</familyName> <affiliation>EPFL</affiliation> </creator> </creators> <titles> <title>Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2019</publicationYear> <dates> <date dateType="Issued">2019-11-04</date> </dates> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3903306</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TBCAS.2019.2951222</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/deephealth</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>The integration of wearable devices in humans&#39; daily lives has grown significantly in recent years and still continues to affect different aspects of high-quality life. Thus, ensuring the reliability of the decisions becomes essential in biomedical applications, while representing a major challenge considering battery-powered wearable technologies. Transferring the complex and energy-consuming computations to fogs or clouds can significantly reduce the energy consumption of wearable devices and result in a longer lifetime of these systems with a single battery charge. In this work, we aim to distribute the complex and energy-consuming machine-learning computations between the edge, fog, and cloud, based on the notion of self-awareness that takes into account the complexity and reliability of the algorithm. We also model and analyze the trade-offs in terms of energy consumption, latency, and performance of different Internet of Things (IoT) solutions. We consider the epileptic seizure detection problem as our real-world case study to demonstrate the importance of our proposed self-aware methodology.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/825111/">825111</awardNumber> <awardTitle>Deep-Learning and HPC to Boost Biomedical Applications for Health</awardTitle> </fundingReference> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/785907/">785907</awardNumber> <awardTitle>Human Brain Project Specific Grant Agreement 2</awardTitle> </fundingReference> <fundingReference> <funderName>Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100001711</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/SNSF/Project+funding/200020_182009/">200020_182009</awardNumber> <awardTitle>ML-edge: Enabling Machine-Learning-Based Health Monitoring in Edge Sensors via Architectural Customization</awardTitle> </fundingReference> </fundingReferences> </resource>
Views | 80 |
Downloads | 111 |
Data volume | 198.4 MB |
Unique views | 57 |
Unique downloads | 108 |