Journal article Open Access

Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud

Forooghifar, Farnaz; Aminifar, Amir; Atienza Alonso, David


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/3903306">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3903306</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/3903306"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Forooghifar, Farnaz</foaf:name>
        <foaf:givenName>Farnaz</foaf:givenName>
        <foaf:familyName>Forooghifar</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>EPFL</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Aminifar, Amir</foaf:name>
        <foaf:givenName>Amir</foaf:givenName>
        <foaf:familyName>Aminifar</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>EPFL</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Atienza Alonso, David</foaf:name>
        <foaf:givenName>David</foaf:givenName>
        <foaf:familyName>Atienza Alonso</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>EPFL</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/825111/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/785907/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/SNSF/Project+funding/200020_182009/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100001711</dct:identifier>
        <foaf:name>Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-11-04</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3903306"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3903306</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1109/TBCAS.2019.2951222"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/deephealth"/>
    <dct:description>&lt;p&gt;The integration of wearable devices in humans&amp;#39; daily lives has grown significantly in recent years and still continues to affect different aspects of high-quality life. Thus, ensuring the reliability of the decisions becomes essential in biomedical applications, while representing a major challenge considering battery-powered wearable technologies. Transferring the complex and energy-consuming computations to fogs or clouds can significantly reduce the energy consumption of wearable devices and result in a longer lifetime of these systems with a single battery charge. In this work, we aim to distribute the complex and energy-consuming machine-learning computations between the edge, fog, and cloud, based on the notion of self-awareness that takes into account the complexity and reliability of the algorithm. We also model and analyze the trade-offs in terms of energy consumption, latency, and performance of different Internet of Things (IoT) solutions. We consider the epileptic seizure detection problem as our real-world case study to demonstrate the importance of our proposed self-aware methodology.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TBCAS.2019.2951222"/>
        <dcat:byteSize>1787767</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3903306/files/EPFL - Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud_preprint.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/825111/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">825111</dct:identifier>
    <dct:title>Deep-Learning and HPC to Boost Biomedical Applications for Health</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/785907/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">785907</dct:identifier>
    <dct:title>Human Brain Project Specific Grant Agreement 2</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/SNSF/Project+funding/200020_182009/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">200020_182009</dct:identifier>
    <dct:title>ML-edge: Enabling Machine-Learning-Based Health Monitoring in Edge Sensors via Architectural Customization</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100001711</dct:identifier>
        <foaf:name>Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
80
111
views
downloads
Views 80
Downloads 111
Data volume 198.4 MB
Unique views 57
Unique downloads 108

Share

Cite as