Journal article Open Access
Forooghifar, Farnaz; Aminifar, Amir; Atienza Alonso, David
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://zenodo.org/record/3903306"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3903306</dct:identifier> <foaf:page rdf:resource="https://zenodo.org/record/3903306"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Forooghifar, Farnaz</foaf:name> <foaf:givenName>Farnaz</foaf:givenName> <foaf:familyName>Forooghifar</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>EPFL</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Aminifar, Amir</foaf:name> <foaf:givenName>Amir</foaf:givenName> <foaf:familyName>Aminifar</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>EPFL</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Atienza Alonso, David</foaf:name> <foaf:givenName>David</foaf:givenName> <foaf:familyName>Atienza Alonso</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>EPFL</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness From Edge to Cloud</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued> <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/825111/"/> <schema:funder> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </schema:funder> <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/785907/"/> <schema:funder> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </schema:funder> <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/SNSF/Project+funding/200020_182009/"/> <schema:funder> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100001711</dct:identifier> <foaf:name>Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung</foaf:name> </foaf:Organization> </schema:funder> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-11-04</dct:issued> <owl:sameAs rdf:resource="https://zenodo.org/record/3903306"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3903306</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <owl:sameAs rdf:resource="https://doi.org/10.1109/TBCAS.2019.2951222"/> <dct:isPartOf rdf:resource="https://zenodo.org/communities/deephealth"/> <dct:description><p>The integration of wearable devices in humans&#39; daily lives has grown significantly in recent years and still continues to affect different aspects of high-quality life. Thus, ensuring the reliability of the decisions becomes essential in biomedical applications, while representing a major challenge considering battery-powered wearable technologies. Transferring the complex and energy-consuming computations to fogs or clouds can significantly reduce the energy consumption of wearable devices and result in a longer lifetime of these systems with a single battery charge. In this work, we aim to distribute the complex and energy-consuming machine-learning computations between the edge, fog, and cloud, based on the notion of self-awareness that takes into account the complexity and reliability of the algorithm. We also model and analyze the trade-offs in terms of energy consumption, latency, and performance of different Internet of Things (IoT) solutions. We consider the epileptic seizure detection problem as our real-world case study to demonstrate the importance of our proposed self-aware methodology.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.1109/TBCAS.2019.2951222"/> <dcat:byteSize>1787767</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/3903306/files/EPFL - Resource-Aware Distributed Epilepsy Monitoring Using Self-Awareness from Edge to Cloud_preprint.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/825111/"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">825111</dct:identifier> <dct:title>Deep-Learning and HPC to Boost Biomedical Applications for Health</dct:title> <frapo:isAwardedBy> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </frapo:isAwardedBy> </foaf:Project> <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/785907/"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">785907</dct:identifier> <dct:title>Human Brain Project Specific Grant Agreement 2</dct:title> <frapo:isAwardedBy> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier> <foaf:name>European Commission</foaf:name> </foaf:Organization> </frapo:isAwardedBy> </foaf:Project> <foaf:Project rdf:about="info:eu-repo/grantAgreement/SNSF/Project+funding/200020_182009/"> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">200020_182009</dct:identifier> <dct:title>ML-edge: Enabling Machine-Learning-Based Health Monitoring in Edge Sensors via Architectural Customization</dct:title> <frapo:isAwardedBy> <foaf:Organization> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100001711</dct:identifier> <foaf:name>Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung</foaf:name> </foaf:Organization> </frapo:isAwardedBy> </foaf:Project> </rdf:RDF>
Views | 80 |
Downloads | 111 |
Data volume | 198.4 MB |
Unique views | 57 |
Unique downloads | 108 |