Working paper Open Access

StreamFlow: cross-breeding cloud with HPC

Iacopo Colonnelli; Barbara Cantalupo; Ivan Merelli; Marco Aldinucci


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Workflow</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">High-Performance Computing</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Cloud</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Bioinformatics</subfield>
  </datafield>
  <controlfield tag="005">20200621221822.0</controlfield>
  <controlfield tag="001">3902872</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, University of Torino, Italy</subfield>
    <subfield code="0">(orcid)0000-0001-7575-3902</subfield>
    <subfield code="a">Barbara Cantalupo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Biomedical Technologies (ITB) of the Italian National Research Council (CNR)</subfield>
    <subfield code="0">(orcid)0000-0003-3587-3680</subfield>
    <subfield code="a">Ivan Merelli</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, University of Torino, Italy</subfield>
    <subfield code="0">(orcid)0000-0001-8788-0829</subfield>
    <subfield code="a">Marco Aldinucci</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">552695</subfield>
    <subfield code="z">md5:fc1424cf5f3c4c01b5f6374c13ed4129</subfield>
    <subfield code="u">https://zenodo.org/record/3902872/files/2002.01558v2.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-deephealth</subfield>
    <subfield code="o">oai:zenodo.org:3902872</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, University of Torino, Italy</subfield>
    <subfield code="0">(orcid)0000-0001-9290-2017</subfield>
    <subfield code="a">Iacopo Colonnelli</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">StreamFlow: cross-breeding cloud with HPC</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-deephealth</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825111</subfield>
    <subfield code="a">Deep-Learning and HPC to Boost Biomedical Applications for Health</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Workflows are among the most commonly used tools in a variety of execution environments. Many of them target a specific environment; few of them make it possible to execute an entire workflow in different environments, e.g. Kubernetes and batch clusters. We present a novel approach to workflow execution, called StreamFlow, that complements the workflow graph with the declarative description of potentially complex execution environments, and that makes it possible the execution onto multiple sites not sharing a common data space. StreamFlow is then exemplified on a novel bioinformatics pipeline for single-cell transcriptomic data analysis workflow.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3902871</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3902872</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">workingpaper</subfield>
  </datafield>
</record>
14
11
views
downloads
All versions This version
Views 1414
Downloads 1111
Data volume 6.1 MB6.1 MB
Unique views 1010
Unique downloads 88

Share

Cite as