There is a newer version of this record available.

Working paper Open Access

StreamFlow: cross-breeding cloud with HPC

Iacopo Colonnelli; Barbara Cantalupo; Ivan Merelli; Marco Aldinucci


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:cnt="http://www.w3.org/2011/content#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3902872">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3902872</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3902872"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-9290-2017">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Iacopo Colonnelli</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Computer Science, University of Torino, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-7575-3902">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Barbara Cantalupo</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Computer Science, University of Torino, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-3587-3680">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Ivan Merelli</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Biomedical Technologies (ITB) of the Italian National Research Council (CNR)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-8788-0829">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Marco Aldinucci</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Department of Computer Science, University of Torino, Italy</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>StreamFlow: cross-breeding cloud with HPC</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>Workflow</dcat:keyword>
    <dcat:keyword>High-Performance Computing</dcat:keyword>
    <dcat:keyword>Cloud</dcat:keyword>
    <dcat:keyword>Bioinformatics</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/825111/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-02-26</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3902872"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3902872</skos:notation>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3902871"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/deephealth"/>
    <owl:versionInfo>v2</owl:versionInfo>
    <dct:description>&lt;p&gt;Workflows are among the most commonly used tools in a variety of execution environments. Many of them target a specific environment; few of them make it possible to execute an entire workflow in different environments, e.g. Kubernetes and batch clusters. We present a novel approach to workflow execution, called StreamFlow, that complements the workflow graph with the declarative description of potentially complex execution environments, and that makes it possible the execution onto multiple sites not sharing a common data space. StreamFlow is then exemplified on a novel bioinformatics pipeline for single-cell transcriptomic data analysis workflow.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:rights>
          <dct:RightsStatement rdf:about="https://creativecommons.org/licenses/by/4.0/legalcode">
            <rdfs:label>Creative Commons Attribution 4.0 International</rdfs:label>
          </dct:RightsStatement>
        </dct:rights>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3902872"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/825111/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">825111</dct:identifier>
    <dct:title>Deep-Learning and HPC to Boost Biomedical Applications for Health</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
43
37
views
downloads
All versions This version
Views 4329
Downloads 3723
Data volume 21.1 MB12.7 MB
Unique views 3522
Unique downloads 3420

Share

Cite as