Dataset Open Access

News Title Sentiment Dataset

Chang Wei Tan; Christoph Bergmeir; Francois Petitjean; Geoffrey I Webb


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">time series</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">regression</subfield>
  </datafield>
  <controlfield tag="005">20210324023809.0</controlfield>
  <controlfield tag="001">3902726</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Monash University</subfield>
    <subfield code="0">(orcid)0000-0002-3665-9021</subfield>
    <subfield code="a">Christoph Bergmeir</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Monash University</subfield>
    <subfield code="0">(orcid)0000-0001-5334-3574</subfield>
    <subfield code="a">Francois Petitjean</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Monash University</subfield>
    <subfield code="0">(orcid)0000-0001-9963-5169</subfield>
    <subfield code="a">Geoffrey I Webb</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">22098721</subfield>
    <subfield code="z">md5:cbf01effdf6783a5777aa3f44ecb701e</subfield>
    <subfield code="u">https://zenodo.org/record/3902726/files/NewsTitleSentiment_TEST.ts</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">51553769</subfield>
    <subfield code="z">md5:f553899ab287a882941b6bea7e6c9624</subfield>
    <subfield code="u">https://zenodo.org/record/3902726/files/NewsTitleSentiment_TRAIN.ts</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-06-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="p">user-ts_regression</subfield>
    <subfield code="o">oai:zenodo.org:3902726</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Monash University</subfield>
    <subfield code="0">(orcid)0000-0001-8377-3241</subfield>
    <subfield code="a">Chang Wei Tan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">News Title Sentiment Dataset</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ts_regression</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This dataset is part of the Monash, UEA &amp;amp;&amp;nbsp;UCR time series regression repository.&amp;nbsp;&lt;a href="http://tseregression.org/"&gt;http://tseregression.org/&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;The goal of this dataset is to predict sentiment score for news title.&amp;nbsp;This dataset contains 83164 time series obtained from the News Popularity in Multiple Social Media Platforms dataset from the UCI repository.&amp;nbsp;This is a large data set of news items and their respective social feedback on multiple platforms: Facebook, Google+ and LinkedIn.&amp;nbsp;The collected data relates to a period of 8 months, between November 2015 and July 2016, accounting for about 100,000 news items on four different topics: economy, microsoft, obama and palestine.&amp;nbsp;This data set is tailored for evaluative comparisons in predictive analytics tasks, although allowing for tasks in other research areas such as topic detection and tracking, sentiment analysis in short text, first story detection or news recommendation.&amp;nbsp;The time series has 3 dimensions.&amp;nbsp;&lt;br&gt;
&lt;br&gt;
Please refer to&amp;nbsp;&lt;a href="https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+Multiple+Social+Media+Platforms"&gt;https://archive.ics.uci.edu/ml/datasets/News+Popularity+in+Multiple+Social+Media+Platforms&lt;/a&gt;&amp;nbsp;for more details&lt;br&gt;
&lt;br&gt;
Citation request&lt;br&gt;
Nuno Moniz and Luis Torgo (2018), Multi-Source Social Feedback of Online News Feeds, CoRR&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3902725</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3902726</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
261
104
views
downloads
All versions This version
Views 261261
Downloads 104104
Data volume 3.8 GB3.8 GB
Unique views 236236
Unique downloads 6363

Share

Cite as