Dataset Open Access

Benzene Concentration Dataset

Chang Wei Tan; Christoph Bergmeir; Francois Petitjean; Geoffrey I Webb


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3902673</identifier>
  <creators>
    <creator>
      <creatorName>Chang Wei Tan</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8377-3241</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
    <creator>
      <creatorName>Christoph Bergmeir</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3665-9021</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
    <creator>
      <creatorName>Francois Petitjean</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5334-3574</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
    <creator>
      <creatorName>Geoffrey I Webb</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9963-5169</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Benzene Concentration Dataset</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>time series</subject>
    <subject>regression</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-06-21</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3902673</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3902672</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ts_regression</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This dataset is part of the Monash, UEA &amp;amp;&amp;nbsp;UCR time series regression repository.&amp;nbsp;&lt;a href="http://tseregression.org/"&gt;http://tseregression.org/&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;This goal of this dataset is to predict benzene concentration in an Italian city. This dataset contains 8878 time series obtained from the Air Quality dataset from the UCI repository.&amp;nbsp;The time series has 8 dimensions which consists of hourly averaged responses from an array of 5 metal oxide chemical sensors embedded in an Air Quality Chemical Multisensor Device, as well as temperature, relative humidity and absolute humidity.&amp;nbsp;The Air Quality Chemical Multisensor device was located on the field in a significantly polluted area, at road level, within an Italian city.&amp;nbsp;Data were recorded from March 2004 to February 2005 (one year) representing the longest freely available recordings of on field deployed air quality chemical sensor devices responses.&amp;nbsp;Ground Truth hourly averaged concentrations for CO, Non Metanic Hydrocarbons, Benzene, Total Nitrogen Oxides (NOx) and Nitrogen Dioxide (NO2) and were provided by a co-located reference certified analyzer.&lt;br&gt;
&lt;br&gt;
Please refer to &lt;a href="https://archive.ics.uci.edu/ml/datasets/Air+Quality"&gt;https://archive.ics.uci.edu/ml/datasets/Air+Quality&lt;/a&gt;&amp;nbsp;for more details.&lt;/p&gt;

&lt;p&gt;Relevant papers&lt;br&gt;
S. De Vito, E. Massera, M. Piga, L. Martinotto, G. Di Francia, On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario, Sensors and Actuators B: Chemical, Volume 129, Issue 2, 22 February 2008, Pages 750-757, ISSN 0925-4005.&lt;br&gt;
Saverio De Vito, Marco Piga, Luca Martinotto, Girolamo Di Francia, CO, NO2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization, Sensors and Actuators B: Chemical, Volume 143, Issue 1, 4 December 2009, Pages 182-191, ISSN 0925-4005.&lt;br&gt;
S. De Vito, G. Fattoruso, M. Pardo, F. Tortorella and G. Di Francia, Semi-Supervised Learning Techniques in Artificial Olfaction: A Novel Approach to Classification Problems and Drift Counteraction, in IEEE Sensors Journal, vol. 12, no. 11, pp. 3215-3224, Nov. 2012. doi: 10.1109/JSEN.2012.2192425&lt;/p&gt;

&lt;p&gt;&lt;br&gt;
Citation request&lt;br&gt;
S. De Vito, E. Massera, M. Piga, L. Martinotto, G. Di Francia, On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario, Sensors and Actuators B: Chemical, Volume 129, Issue 2, 22 February 2008, Pages 750-757, ISSN 0925-4005&lt;/p&gt;</description>
  </descriptions>
</resource>
328
652
views
downloads
All versions This version
Views 328328
Downloads 652652
Data volume 155.8 GB155.8 GB
Unique views 298298
Unique downloads 110110

Share

Cite as