Dataset Open Access
Wu, Ling;
Nguyen, Van Dung;
Kilingar, Nanda Gopala;
Noels, Ludovic
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Wu, Ling</dc:creator> <dc:creator>Nguyen, Van Dung</dc:creator> <dc:creator>Kilingar, Nanda Gopala</dc:creator> <dc:creator>Noels, Ludovic</dc:creator> <dc:date>2020-06-21</dc:date> <dc:description>Data related to the publication (we would be grateful if you could cite the paper in the case in which you are using the data) title = "A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths", journal = "Computer Methods in Applied Mechanics and Engineering", pages = " 113234", year = "2020", issn = "0045-7825", doi = "https://doi.org/10.1016/j.cma.2020.113234", author = "Wu, Ling and Nguyen, Van Dung and Kilingar, Nanda Gopala and Noels, Ludovic"</dc:description> <dc:description>This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 862015 for the project "Multi-scale Optimisation for Additive Manufacturing of fatigue resistant shock-absorbing MetaMaterials (MOAMMM)" of the H2020-EU.1.2.1. -FET Open Programme. N.G. Kilingar was financed by the EnlightenIt project, grant number PDR T.0038.16 of FRS-FNRS. V.D. Nguyen was a Postdoctoral Researcher at the Belgian National Fund for Scientific Research (FNRS)</dc:description> <dc:identifier>https://zenodo.org/record/3902663</dc:identifier> <dc:identifier>10.5281/zenodo.3902663</dc:identifier> <dc:identifier>oai:zenodo.org:3902663</dc:identifier> <dc:language>eng</dc:language> <dc:relation>info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/862015/</dc:relation> <dc:relation>handle:10.1016/j.cma.2020.113234</dc:relation> <dc:relation>doi:10.5281/zenodo.3902662</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:source>Computer Methods in Applied Mechanics and Engineering 113234</dc:source> <dc:subject>Artificial Neural Network</dc:subject> <dc:subject>Recurrent Neural Network</dc:subject> <dc:subject>Surrogate</dc:subject> <dc:subject>Multi-scale</dc:subject> <dc:subject>Elasto-plasticity</dc:subject> <dc:subject>Data-driven</dc:subject> <dc:title>Data of A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths</dc:title> <dc:type>info:eu-repo/semantics/other</dc:type> <dc:type>dataset</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 280 | 280 |
Downloads | 88 | 88 |
Data volume | 26.2 GB | 26.2 GB |
Unique views | 247 | 247 |
Unique downloads | 67 | 67 |