Dataset Open Access

Appliances Energy Dataset

Chang Wei Tan; Christoph Bergmeir; Francois Petitjean; Geoffrey I Webb


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3902637</identifier>
  <creators>
    <creator>
      <creatorName>Chang Wei Tan</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8377-3241</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
    <creator>
      <creatorName>Christoph Bergmeir</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3665-9021</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
    <creator>
      <creatorName>Francois Petitjean</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5334-3574</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
    <creator>
      <creatorName>Geoffrey I Webb</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9963-5169</nameIdentifier>
      <affiliation>Monash University</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Appliances Energy Dataset</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>time series</subject>
    <subject>regression</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-06-21</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3902637</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3902636</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ts_regression</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This dataset is part of the Monash, UEA &amp;amp;&amp;nbsp;UCR time series regression repository.&amp;nbsp;&lt;a href="http://tseregression.org/"&gt;http://tseregression.org/&lt;/a&gt;&lt;/p&gt;

&lt;p&gt;The goal of this dataset is to predict total energy usage in kWh of a house. This dataset contains 138 time series obtained from the Appliances Energy Prediction dataset from the UCI repository.&amp;nbsp;The time series has 24 dimensions. This includes temperature and humidity measurements of 9 rooms in a house, monitored with a ZigBee wireless sensor network.&amp;nbsp;It also includes weather and climate data such as temperature, pressure, humidity, wind speed, visibility and dewpoint measured from Chievres airport.&amp;nbsp;The data set is averaged for 10 minutes period and spanning 4.5 months.&lt;/p&gt;

&lt;p&gt;Please refer to &lt;a href="https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction"&gt;https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction&lt;/a&gt;&amp;nbsp; for more details&lt;br&gt;
&lt;br&gt;
Relevant papers&lt;br&gt;
Luis M. Candanedo, Veronique Feldheim, Dominique Deramaix, Data driven prediction models of energy use of appliances in a low-energy house, Energy and Buildings, Volume 140, 1 April 2017, Pages 81-97, ISSN 0378-7788&lt;br&gt;
&lt;br&gt;
Citation request&lt;br&gt;
Luis M. Candanedo, Veronique Feldheim, Dominique Deramaix, Data driven prediction models of energy use of appliances in a low-energy house, Energy and Buildings, Volume 140, 1 April 2017, Pages 81-97, ISSN 0378-7788&lt;/p&gt;</description>
  </descriptions>
</resource>
1,263
5,879
views
downloads
All versions This version
Views 1,2631,262
Downloads 5,8795,879
Data volume 44.9 GB44.9 GB
Unique views 1,1241,123
Unique downloads 2,9422,942

Share

Cite as