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ABSTRACT

The paper deals with the estimation of complex motion pat-
terns. The complexity is due to (i) the motions of two trans-
parent layers, and (ii) an additional change of brightness in
the layers, which can be due to an additive source term, an
exponential decay, or diffusion. We present new models
and constraints for such complex motion patterns. Exper-
iments on synthetic image sequences demonstrate the per-
formance of our models in conjunction with a total least-
squares parameter estimation scheme. Crucial ingredients of
this scheme are new filter families of derivative filters of up
to fourth order. We present a procedure for how to construct
appropriate filter families for the introduced models.

1. INTRODUCTION

We present linear models for the estimation of transparent
motions and physically motivated brightness changes. This
work combines model design as presented in [3] and [7] with
estimation approaches from [5] and discretization via opti-
mised filter families [6].

The models introduced in Sec. 2 are all of the form
d”p = 0 with a parameter vector p and a data vector d. This
parameter vector does not contain the model parameters di-
rectly, but in the form of mixed motion parameters [5]. We
show how to disentangle the parameters, given an estimated
parameter vector p. Sec. 3 introduces the so called structure
tensor and gives a rule for how to construct suitable filter
families. Finally, the experimental results are presented in
Sec. 4.

2. CONSTRUCTION OF THE MODELS

We will here derive brightness-change constraint equations
(BCCE) from motion models by combining well known
BCCE (see e.g. [3]) with the model of transparent motions
first presented in [7]. We start with the simplest case, two
transparent motions without brightness changes.

2.1 Transparent Motions
The BCCE for standard, single motion optical flow is

(v)f=0where (v):=vx x+Vvy ,+ ¢ @)

with image intensities f, partial derivatives ., ,, ;in x-
, y- and ¢-directions, respectively, and displacement vector
v = [vy,wy]T. We construct a BCCE for transparent motions
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by successively applying to the image sequence [7]. Thus
if

f(x,1) = filx—ut) + f2(x = vi), (2)
a basic calculation reveals that (u) (v)f =0 or equiva-
lently

UxVx xxf+ (fovy + uyvx) xyf_-"" uyv)_/ yyf+ (3)
(”x +Vx) xtf + (uy +Vy) ytf + ttf =0

where . f denotes the second order partial derivative in di-
rection x, etc. We now define the mixed motion parame-
ters [5]

Cxx = UyxVx Cxy = UxVy +UyVx

Cyy = UV
vy vy 4
Cxt = Uy +Vy “

Cyr = Uy +Vy

and rewrite Eq. 3 as
dr p=0 )
with
P = [mecxy7cyy7cxtvcyt71}T (©6)

d:=[ uf, xyfa yyfa xtf yrf’ rtﬂr-

We observe that Eq. 5 is a linear model with parameter vector
p and data vector d. Parameters in such a linear model can
be estimated by a number of standard parameter-estimation
schemes used for optical flow estimation (see e.g. [1, 4] for
surveys on such schemes). We implemented a total least-
squares scheme, based on the so called extended and gen-
eralised structure tensor [3, 5]. We describe this scheme in
Sec. 3. From the parameter vector p we can infer the ve-
locities u and v by using the following ’trick’ [5]. First, we
interpret the vectors u and v as complex numbers. Then,
with the definitions

Ag := cxx — ¢y Hicyy Ay = ey +icy 7

u and v are the solutions of the complex polynomial
2 —Aiz+A49=0. ®)

2.2 Transparent Motions plus Additive Source

A locally constant additive source in the image sequence f
implies that f is given as

f(x,1) = filx —at) + fo(x = vi) + k(1) ©)
By using as defined in Eq. 1 we obtain
() (vf=r. (10)

In analogy to Eq. 6 above, we introduce the vectors

nT
CXX7cxyvcyy7cX[7cyt717kl]

pi=|
d::[xx_ﬂ xyf7 yyfa xtf» yl‘fa l‘l‘f}*l]T (11)



and again obtain a linear model of the form d”p = 0. Once
the parameter vector p has been determined by using the es-
timation scheme above, k¥’ is given as its last component.
Since we can neither retrieve k, nor &/, but only the sec-
ond derivative k¥, motion in an image sequence with a linear
brightness change can be estimated via the model given in
Eq. 3.

2.3 Transparent Motions plus Exponential Decay

In case of multiplicative brightness changes, the image se-
quence [ is given as
f(x.1) = filx—ut)ki (1) + fo(x — Vi) ko (2). (12)
If
ki(t)  exp(eit) ky(t)  exp(cat) (13)
then
wh=ch Wfh=cf. (14)
This is the partial differential equation for an exponentially
decaying signal. By defining
(vie)i=vx x+Vvy ,+ —c (15)
we obtain
(u,e1) (v,e2)f=0. (16)
The above equation is linearised by introducing

p:= [CXX7CXy7ny7CXI7CyT7 L, —uycy —vxey,
T
—UyCy — Ve, —C| — C€2,C1C2) (17)
. d d T
d:= [ xxf7 xyf7 yyf7 xtf7 yl‘fv tl‘f7 va yfv l‘fvf] .

which leads again to a constraint of the form d”p = 0. The
parameters ¢; and ¢, are then disentangled as in Sec. 2.1:
with

A()ZZC]CZ A1 = —C1 —C, (18)
c¢1 and ¢ are the solutions of the real polynomial
X2+ A1x+4y = 0. (19)

We have determined the two motion vectors and the two de-
cay rates, but still do not know which decay rate belongs to
which motion vector. We use the remaining components of
p for the correct assignment. If the assignment is correct,

[ux,uy,c1] and [vy, vy, c2] should fulfill the conditions
—uUxCy —vyc1 —p7 =0 —upcy —vycp — pg ~ 0. (20)

Otherwise we swap ¢ and c;.

2.4 Transparent Motions plus Diffusion

To obtain a model for transparent motions plus diffusion, we
start with the following partial differential equation

(v,e)f=0with (v,c)=vx x+v y+ (—cA, 21

and A = .+ ,,. For two image sequences f; and f; that
are affected by diffusion, i.e.

(u,e1)f1=0 (v,e2) =0 (22)
and f = f| + f>, we obtain the constraint
(u,c1) (v,e2)f =0. (23)

Again we can linearise this equation, by using
P = [Cxx, Cxyy Cyys Cat s Oty L, —ttxcp — Ve

—uycy —vycp, —Cp — cz,clcz]r
d:i=[uf, wfs wh xfs wls uf, 2Df yAF, rAf,AAfz}:,
to d”p = 0. The parameter vector is identical to the one fr(orr)l
the model for exponential decay (Eq. 17).

3. ESTIMATION SCHEME
3.1 Structure Tensor

All the constraints derived in Sec. 2 are of the form d”p =0
with the data vector d and the parameter vector p. We have
thus one equation per pixel, but need to estimate several pa-
rameters (the components of p) per equation, which is an
under determined system of equations. In order to solve this
system we assume, that within a small spatio-temporal neigh-
borhood ofapixeli all equations are approximately solved
by the same set of parameters p. The model d” p = 0 there-
fore becomes
dlp = ¢, for all pixels i in (25)
with errors e; which have to be minimized by the sought for
solution p. Using a matrix D composed of the vectors d; via
D;; = (d;); Eq. 25 becomes Dp = e. We minimize e using
a weighted 2-norm
THT T Lo

le[| =|/Dp|[=p'D"WDp=:p Jp=min  (26)
where W is a diagonal matrix containing the weights. In our
case Gaussian weights are used, implemented via a 15-tab
filter with standard deviation 7. It multiplies each equation
i in Eq. 25 by a weight w;. The matrix J = DTWD is the
so called structure tensor. The error e is minimized by intro-
ducing the assumption |p| = 1 in order to suppress the trivial
solution p = 0. Doing so the solutions p is given by the
eigenvector to the smallest eigenvalue of J. Moreover, for
our models, this vector p must be normalized with respect to
its 67 component (cmp. eqs. 6, 11, 17 and 24). For further
details on computational issues of TLS estimation, we refer
to [3] and the citations therein.

3.2 Optimised Filter Sets

We implement all derivatives occurring in Egs. 6, 11, 17,
and 24 as separable spatio-temporal convolution filters. Each
filter consists of first or second order derivatives, smoothed
in the orthogonal directions. For filter design, we use the
method presented in [6]. All of the models developed in
Sec. 2.1 are of the form d”p = 0. Obviously the data vec-
tor d has to be perpendicular to the parameter vector p. The
length of d is of minor interest. Thus we need to design a
filter set for each model separately that calculates the orien-
tation of d as good as possible. For the mixed second order
derivatives from Eq. 6, we performed a rigorous optimisation
following [6]. For 3-tab filters we obtain

1" =1[0.12026,0.75948,0.12026] D' =10.5,0,—0.5]

1> =1[0.21478,0.57044,0.21478] D? =[1,-2,1] @7)
and for 5-tab filters

' =10.01504,0.23301,0.50390,0.23301,0.01504]

I =1[0.01554,0.23204,0.50484,0.23204,0.01554] 28)

D' =[0.06368,0.37263,0,—0.37263,—-0.063681]

D?>  =10.20786,0.16854, —0.75282,0.16854,0.20786]

Second order derivative filters, e.g. , and ,y, are then gen-
erated via
w=DLxD}«I! and o =DI«[}*I} (29)

where * denotes convolution and lower indices denote the
application direction. All filters not introduced above, can be



derived by exchange of lower indices. The filters are of size
3x3x3o0r5x5x5.

For the additive brightness model (Eq. 11), we use the
same filters. In the multiplicative brightness model (Eq. 17),
first-order derivatives and an identity operator (last compo-
nent of d) occur. They are build via

c=Dy+[«I} and [=I[ [} «I} (30)
These filters are of size 3 X 3 x 3 or 5 x 5 x 5 also.

The diffusion model is more complex because spatial

Laplacians A occur. We use

L=D}+I} +D} I} 31

as discrete Laplace operator. The 7" to 10" component of d
from Eq. 24 are then

A =D xZxPxL yO  =E«D) I} +L
AN :lg*ljy*D}*L AN =P %L+L.

(32)

These are of size 5 X 5 x 3 or 9 x 9 x 5. The inherent smooth-

ing of all filters of a set should be as similar as possible [6].

Thus the 1% to 6" component of d from Eq. 24 are not cal-

culated via the second order derivative filters from Eq. 29

directly, but via smoothed versions

xy:D;*Dyl*I,l*If*IyZ and m:Df*IyZ*I,Z*If*IyE )

33

Note that additional smoothing is only applied in x- and

y-directions. All filters of the set are of the same spatio-
temporal size.

4. EXPERIMENTS

All the experimental results have been obtained by using syn-
thetic image sequences with ground truth.

4.1 Synthetic Sequences

All image sequences used in the experiments consist of two
motion layers. Each layer is generated by moving a given
basic pattern or image and a subsequent brightness change.
The first motion layer f] is generated by moving such a pat-
tern with known *actual’ velocity u, = [0, —1]7, the second
layer f> via v, = [1,1]7. We use integer shifts in order to
avoid interpolation errors. From these 2 layers we generate
4 image sequences, one for pure transparent motions, one
with additive brightness, one with exponential decay and one
with diffusion. The first 3 sequences are defined by Eq. 2,
Eq.9 (" =8)and Eq. 12 (¢c; = —1,c; = —0.5), respectively.
The diffusion sequence is generated via successive convo-
lution of each layer by a truncated and normalised Gaus-
sian kernel G exp(—x?/(2 ?)) before summing them up.
Solving Eq. 21 (see e.g. [2])'reveals that we have to choose
= /2¢t. For diffusion we choose ¢; = 1.0 and ¢, = 0.5.
Truncation took place above 6 in order to keep discretiza-
tion errors low.
For illustration of the motions and brightness changes,
we use smoothed delta-combs as basic patterns (cmp. Fig. 1),
but for the error analysis smooth noise patterns as depicted

'More exactly: If ,f =cAf and f = F(x)T(t), then T = exp(—k>ct)
if F = exp(—kx). Thus if F is more complicated than this, we have to mul-
tiply the Fourier transform of F* with 7. This means, in spatial domain we
have to convolve F* with the Fourier transform of T which is proportional to

exp(—x?/(4ct)).

Figure 1: Images 1 to 3 of the ’delta-comb’ test sequence:
a quadratic additive source (Eq. 11), b exponential decay
(Eq. 17), ¢ diffusion (Eq. 24).

in Fig.2. Three subsequent images of the test sequences il-
lustrating the brightness change models are shown in Fig. 1.
The experiments are done with static noise patterns smoothed
by a 5-tab binomial filter [1,4,6,4,1]/16 applied in x- and
y-direction (cmp. Fig.2). No time-varying noise has been
added to the sequences, and therefore, errors presented in
Sec. 4.3 are systematic errors only, coming from the dis-
cretization and estimation process.

4.2 Error Measures

For the estimation of optical flow the most popular error mea-
sure is the angular error E,, (see [1], eq. 3.38) defined by

Ey = arccos(rlr,) (34)

where the lower index of £ indicates, which velocity is used
to obtain this error, rq = [Vxa:Vya, 11/ (Vig + vy + 1)]/2.is
the known (’actual’) ground truth spatio-temporal velocity
vector of length 1 and re = [Vye, vy, 1]/ (Vi + Ve + 1)/2 s
the estimated velocity vector. The same definition holds for
velocities u. For the brightness change parameters ¢, we use
the relative deviation E. between known and estimated c¢’s
giving the systematic error. These errors can be minimised
by an optimal choice of filter families as demonstrated in [6].

4.3 Results

We tested how well the optical flow fields and the brightness
parameters are estimated by using a TLS scheme (Sec. 3.1).
We used 3 filter sets: central differences (3 x 1 x 1), 3-tab
optimised (3 x 3 x 3), and 5-tab optimised (5 x 5 x 5) fil-
ters (cmp. Sec. 3.2).2 In the first test we combined models
with suitable test sequences, see Fig.2. We observe that all
errors are rather high for central differences and 3-tab op-
timised filters.Using 5-tab optimised filters, the errors drop

2Sizes for the diffusion case are (5 x 1 x 1), (5x 5% 3), and (9 x 9 x 5).



I3x1x1 3x3x3 5x5x%x5

=l...

Eu=1.7,Ey=89 E4=0.67, Ey=4.0 Ey,=0.02, Ey,=0.02

Ew=22,Ey=79 Ey=0.67, Ey=3.8 E,=0.02, E,=0.02
Ek"’ 4% Ek” 0.6% Ek” 2¢—3%

Eq=14.0, E, =24 Eu=175, Ey=2.2 E,=0.16, Ey=0.07
E., =34% E. =9.3% Ee, =0.2%
E.,=41% E.,=18% Ee, =0.7%

d...

Eu=21,Ey=7.0 Eu=6.6, Ey=23 Ey=0.16, Ey=0.10
Ee =5.6% Ee, =12% Ee, =0.1%
E.,=113% E., =44% E., =0.4%

Figure 2: Flow fields using different filter sets, models and
suitable test sequences: a no brightness change, b addi-
tive quadratic, ¢ multiplicative exponential, and d diffusion
model. Filter sizes left: 3 x 1 x 1, middle: 3 x 3 x 3, right:
5 x5 x 5. Motion vectors are scaled by a factor 10. Errors
Ey and Ey are angular errors (Eq. 34) in degree, E., E.,,
and E;» are the absolute values of the relative error of the
brightness parameter estimate.

about 1-2 orders of magnitude. Consequently, we use these
5-tab filters in the remainder of this paper. As a second test,
we combined the models with non-suitable image sequences.
Obviously the brightness parameters estimated do not make
any sense then. We neglect them and present the flow fields,
only (see Fig.3). Only the combination multiplicative model
with additive brightness change in the data gives reasonable
estimates. All other combinations lead to large errors.

5. CONCLUSION

We have presented linear models for the estimation of trans-
parent motions with additional, physically motivated, bright-
ness changes. When using the correct model, and 5-tab op-
timised filter families for the derivatives, the experiments

non-diff

“.non-add

Eu=31, Ey=52 Eu=100, Ey=102 Ey=51, E, =44

add-diff

Eq=05, Ey=0.5 Eu=19, E,=12

diff-mul

Eu=52, Ey =45
mul-diff

Ew=40, Ey =72

Ey=85Ey=91 Ey=18.0, E, =10
Figure 3: Flow fields obtained by using models that do not
match the test sequences. The text on the images indicate
the model-sequence combination: non: no , add: additive,
mul: multiplicative, and diff: diffusive brightness change.
Motion vectors are scaled by a factor 10. Errors £y, and E,,
are angular errors (Eq. 34) in degree.

yielded low error rates. When using inappropriate motion
models, estimates are poor, except when the multiplicative
model is used for additive brightness change. We have thus
presented a proof of concept for our new methods that deal
with the estimation of complex motion patterns.
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