Dataset Open Access
Rijhwani, Shruti; Preoțiuc-Pietro, Daniel
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/a2fe4f96-2590-4c4f-a549-6b701221d940/temporal-ner-twitter-corpus.zip" }, "checksum": "md5:ba79cfa2ec554a7bc40241f86b344280", "bucket": "a2fe4f96-2590-4c4f-a549-6b701221d940", "key": "temporal-ner-twitter-corpus.zip", "type": "zip", "size": 185283 } ], "owners": [ 70921 ], "doi": "10.5281/zenodo.3899040", "stats": { "version_unique_downloads": 48.0, "unique_views": 196.0, "views": 214.0, "version_views": 214.0, "unique_downloads": 48.0, "version_unique_views": 196.0, "volume": 8893584.0, "version_downloads": 48.0, "downloads": 48.0, "version_volume": 8893584.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3899040", "conceptdoi": "https://doi.org/10.5281/zenodo.3899039", "bucket": "https://zenodo.org/api/files/a2fe4f96-2590-4c4f-a549-6b701221d940", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3899039.svg", "html": "https://zenodo.org/record/3899040", "latest_html": "https://zenodo.org/record/3899040", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3899040.svg", "latest": "https://zenodo.org/api/records/3899040" }, "conceptdoi": "10.5281/zenodo.3899039", "created": "2020-06-17T16:56:52.272923+00:00", "updated": "2020-06-17T22:18:22.795583+00:00", "conceptrecid": "3899039", "revision": 2, "id": 3899040, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3899040", "description": "<p>This repository contains the data set developed for the paper:</p>\n\n<p>“Shruti Rijhwani and Daniel Preo\u021biuc-Pietro. <em>Temporally-Informed Analysis of Named Entity Recognition.</em> In Proceedings of the Association for Computational Linguistics (ACL). 2020.”</p>\n\n<p>It includes 12,000 tweets annotated for the named entity recognition task. The tweets are uniformly distributed over the years 2014-2019, with 2,000 tweets from each year. The goal is to have a temporally diverse corpus to account for data drift over time when building NER models.</p>\n\n<p>The entity types annotated are locations (LOC), persons (PER) and organizations (ORG). The tweets are preprocessed to replace usernames and URLs with a unique token. Hashtags are left intact and can be annotated as named entities.</p>\n\n<p><strong>Format</strong></p>\n\n<p>The repository contains the annotations in JSON format.</p>\n\n<p>Each year-wise file has the tweet IDs along with token-level annotations. The Public Twitter Search API (<a href=\"https://developer.twitter.com/en/docs/tweets/search\">https://developer.twitter.com/en/docs/tweets/search</a>) can be used extract the text for the tweet corresponding to the tweet IDs.</p>\n\n<p><strong>Data Splits</strong></p>\n\n<p>Typically, NER models are trained and evaluated on annotations available at the model building time, but are used to make predictions on data from a future time period. This setup makes the model susceptible to temporal data drift, leading to lower performance on future data as compared to the test set.</p>\n\n<p>To examine this effect, we use tweets from the years 2014-2018 as the training set and random splits of the 2019 tweets as the development and test sets. These splits simulate the scenario of making predictions on data from a future time period.</p>\n\n<p>The development and test splits are provided in the JSON format.</p>\n\n<p><strong>Use</strong></p>\n\n<p>Please cite the data set and the accompanying paper if you found the resources in this repository useful.</p>", "language": "eng", "title": "Temporally-Informed Analysis of Named Entity Recognition", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3899039" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3899040" } } ] }, "keywords": [ "named entity recognition", "twitter", "ner", "twitter ner", "tweets", "temporal analysis", "information extraction" ], "publication_date": "2020-06-17", "creators": [ { "affiliation": "Bloomberg", "name": "Rijhwani, Shruti" }, { "affiliation": "Bloomberg", "name": "Preo\u021biuc-Pietro, Daniel" } ], "meeting": { "acronym": "ACL2020", "url": "https://acl2020.org", "dates": "5-10 July 2020", "title": "The 58th Annual Meeting of the Association for Computational Linguistics" }, "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.3899039", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 214 | 214 |
Downloads | 48 | 48 |
Data volume | 8.9 MB | 8.9 MB |
Unique views | 196 | 196 |
Unique downloads | 48 | 48 |