Dataset Open Access

Load profile data of 50 industrial plants in Germany for one year

Braeuer, Fritz


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">load profile</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">industry</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">SME</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">electricity demand</subfield>
  </datafield>
  <controlfield tag="005">20200618101822.0</controlfield>
  <controlfield tag="001">3899018</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">4391689</subfield>
    <subfield code="z">md5:9552cb604242bb4aa778c76d574f93e8</subfield>
    <subfield code="u">https://zenodo.org/record/3899018/files/LoadProfile_20IPs_2016.csv</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6320943</subfield>
    <subfield code="z">md5:a79655288e18f84dddb242134353ab2f</subfield>
    <subfield code="u">https://zenodo.org/record/3899018/files/LoadProfile_30IPs_2017.csv</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-06-17</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:3899018</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Karlsruhe Institute of Technology</subfield>
    <subfield code="0">(orcid)0000-0002-1555-0625</subfield>
    <subfield code="a">Braeuer, Fritz</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Load profile data of 50 industrial plants in Germany for one year</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This dataset holds the electric load profiles of 50 small and mid-size enterprises in Germany. The load profiles are in 15-minute time resolution for one year. The load is shown in kW as an average over 15 minutes.&lt;/p&gt;

&lt;p&gt;The dataset is divided into two:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;LoadProfile_20IPs_2016 shows load profiles of 20 industrial plants (IP) for the year 2016.&lt;/li&gt;
	&lt;li&gt;LoadProfile_30IPs_2017 shows load profiles of 30 industrial plants (IP) for the year 2017.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;The IPs from the dataset for 2016 do not reappear in the dataset for 2017.&lt;/p&gt;

&lt;p&gt;&amp;nbsp;&lt;/p&gt;

&lt;p&gt;The dataset LoadProfile_20IPs_2016 is evaluated in the following publication:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Covic, N., Braeuer, F., McKenna, R., Pandzic, H., Optimizing Industrial Facilities&amp;rsquo; Active Participation&lt;br&gt;
	in Electricity Markets under Uncertainty, 2020.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;Both datasets together are evaluated in multiple publications:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Braeuer, F., Finck, R., McKenna, R., Comparing empirical and model-based approaches for calculating dynamic grid emission factors: An application to CO2-minimizing storage dispatch in Germany, Journal of Cleaner Production, Volume 266, 2020, 121588, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2020.121588.&lt;/li&gt;
	&lt;li&gt;Braeuer, F., Rominger, J., McKenna, R.,Fichtner, W., Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry, Applied Energy, Volume 239, 2019, Pages 1424-1440, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2019.01.050.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;Enjoy.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3899017</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3899018</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
297
324
views
downloads
All versions This version
Views 297297
Downloads 324324
Data volume 1.5 GB1.5 GB
Unique views 261261
Unique downloads 227227

Share

Cite as