
Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

234

DESIGN AND IMPLEMENTATION OF REAL-TIME PHYSICALLY-BASED
VIRTUAL MUSICAL INSTRUMENTS: A BALANCING ACT

James Leonard
Univ. Grenoble Alpes, CNRS, Grenoble INP*

GIPSA-Lab, 38000 Grenoble, France
james.leonard@gipsa-lab.fr

Jerome Villeneuve
Univ. Grenoble Alpes, CNRS, Grenoble INP*

GIPSA-Lab, 38000 Grenoble, France
jerome.villeneuve@gipsa-lab.fr

ABSTRACT

In recent years, real-time physically-based solutions for
sound synthesis have become a common practice both in
academia and commercial applications, driven jointly by
the increase in computing power and advances in modelling
and simulation techniques. However, designing and im-
plementing such instruments and the means for expressive
interaction with them still poses several challenges, fac-
tors to be balanced by the instrument creator depending
on his or her needs. This paper discusses these concerns
through the prism of mass-interaction physical modelling.
First, a short review on the topics of computation and ex-
pressive control of real-time physical models is proposed,
followed by the introduction of the physical proxy, a new
mass-interaction modelling element yielding new possibili-
ties for expressive interaction via dynamically interpolated
topological connections. Three case-studies of physically-
based virtual musical instruments are then presented and
discussed, particularly in regards to computational aspects,
with benchmarks of various possible implementations. Fi-
nally, we offer some insight on the balance that one must
consider between model and control complexity, and be-
tween software genericity and performance, when building
physical models for real-time sound synthesis.

1. INTRODUCTION

Physical models have been used creatively for sound syn-
thesis and musical composition purposes for over three
decades [1], spanning from the simulation of large virtual
worlds [2] to virtual musical instruments [3, 4]. While in
the early 90s real-time simulation was mostly limited to
waveguide modelling [5], today nearly all physically-based
methods may be computed and controlled interactively for
virtual musical instrument simulation. Indeed, advances in
hardware and computing power and breakthroughs in mod-
elling techniques now allow simulating fairly large-scale
virtual acoustical structures, and to increasingly account for
the non-linear dynamics at play in musical acoustics [6, 7].
A number of formalisms and software tools are now at the

*Institute of Engineering, Univ. Grenoble Alpes.

Copyright: © 2020 James Leonard et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

disposal of musicians, composers and virtual instrument
designers, or indeed anyone interested in making sound
through physical simulation.

This paper aims to discuss some questions that arise in
the design and development process of real-time physical
models for musical creation, starting with general concerns
regarding computation and expressive control, and then
analysing three case-studies of physically-based digital mu-
sical instruments, centred on the mass-interaction paradigm
(although bearing strong similarities with finite difference
approaches, as will be discussed). From this work, we then
offer a discussion on the ”balancing act” of developing phys-
ically based virtual instruments: balance between model
complexity and speed, balance between dynamical richness
of interaction and acoustical richness of simulated vibrat-
ing structures, balance between software genericity / clar-
ity (high-level code, abstractions, etc.) and hand-tailored
optimisation (low-level code). Finally, we conclude with
perspectives on future work.

2. REAL-TIME CONTROL OF
PHYSICALLY-BASED SOUND SYNTHESIS

2.1 Computational Aspects

Once primarily considered as a costly endeavour best suited
for off-line acoustical simulation, physical modelling tech-
niques are now deployed in a variety of academic and com-
mercial real-time systems [8–10]. While digital waveguides
(at least in 1D) offered a strikingly economical solution
for real-time sound synthesis as soon as they appeared,
other more computationally demanding techniques have
only really grown into viable real-time solutions for com-
plex physical models in the last 15 years, jointly due to
efforts in simulation optimisation and the increase in com-
puting power and dedicated hardware (including vectori-
sation, multithreading, GPU-based computation [11, 12]).
Several works now allow for real-time sound-synthesis with
mass-interaction models [13], modal synthesis, or finite
difference time-domain schemes [6]. In particular, the lat-
ter have made impressive progress into real-time territory,
through tailored optimisation techniques [14] and advances
into efficient solvers for non-linear problems [15].

It is worth noting that while all physical-modelling sound
synthesis techniques allow representing 1D, 2D or 3D phys-
ical topologies or spatial grids, the vast majority consider
the discretised matter to move along a single degree of free-
dom (1-DoF). This approach, rooted in theoretical acoustics,



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

235

has the advantage of yielding mostly linear systems that
in turn allow using many convenient mathematical tools
(such as modal decomposition & analysis). The extension
of such formalisms to account for the numerous non-linear
phenomena present in physical acoustical systems is very
much an ongoing effort [15, 16], generally involving rather
heavy mathematics and computation. In this regard, 3-DoF
mass-interaction techniques [7] (drawing from the wide
use of 3D mass-spring models in computer graphics) offer
an interesting gateway into inherently non-linear territory,
although their computational cost is certainly higher than
simple 1-DoF systems.

2.2 Means for Expressive Control

Physical modelling is largely employed in Digital Musical
Instruments, offering means for creative exploration [17]
as well as multisensory interaction through force-feedback
technologies [10, 18, 19]. Traditional MIDI often falls short
in installing expressive interaction with sound-producing
models (especially for continuous excitation such as bow-
ing), whereas more sophisticated input devices such as the
Sensel Morph [8] or Roli Seaboard 1 show promising re-
sults thanks to precise multi-DoF continuous control data.

A key component for expressive interaction with virtual
instruments is to provide means to perform both excita-
tion (e.g. striking, bowing) and modification gestures (e.g.
moving a bow application point or a finger along a string,
moving a pressure point across a membrane or plate). Dy-
namically constraining physical matter in this way generally
sounds much more plausible than direct manipulation of
physical model parameters, which understandably can lead
to ”non-physical” sounding effects. Interpolation strategies
may be employed to account for interaction points located
between two points of discretised space or matter [6]. To
the best of our knowledge, common mass-interaction sound
synthesis frameworks such as [20,21] lack such possibilities,
hindering expressive control potential (a notable exception
being ad hoc implementations by Alexandros Kontogeor-
gakopoulos for cross-fading between listening points to
obtain physically-based audio-effects in [22]). Hereafter,
we present a general solution in the form of dynamically
interpolated topological connections based on standard in-
terpolation schemes.

3. EXPRESSIVE CONTROL OF MASS
INTERACTION MODELS

3.1 Spatial and Topological Considerations

Most mass-interaction toolkits operating on 1-DoF parti-
cles define each physical interaction statically between two
punctual masses of the system. For instance, a collision
between a hammer and a string is modelled as one (or possi-
bly several) point-based interaction(s) between the hammer
and statically defined string mass(es). This offers little flex-
ibility: the string will always be struck at the same spot,
yielding similar acoustic responses that are only modulated

1 Examples of real-time MPE control include Physical Audio’s coupled-
bars plugin (https://physicalaudio.co.uk/PA3) and SWAM’s bowed string
models (https://roli.com/stories/swam-soundpacks).

Figure 1. A 3D mass bouncing on a 3-DoF mesh with
surface contact computation. Surfaces in red represent
active point/plane collision detection and force projection
when the mass is close or in contact with the mesh triangles.

by the relative velocities of the masses. Such punctual
connections prohibit modification gestures such as those
mentioned in Section 2.2, often crucial in adding expres-
siveness and liveliness to synthesised sound.

2 or 3-dimensional mass-interaction models may alleviate
this problem, as they possess geometrical properties: a
hammer mass may potentially collide with any mass of
a vibrating structure. However, handling these cases can
be rather involved and computationally heavy, relying on
3D collision engines and possibly - if one wishes to go
further than mass-to-mass interactions - resorting to surface
meshes defined atop of the physical topology, allowing to
calculate force projections onto the masses that compose
their vertexes (cf. Figure 1). Given the cost of simulating
3D mass-interaction models at audio rate, this solution is
currently ill-fitted for implementing large scale models with
many degrees-of-freedom of control.

3.2 Interpolated Input, Output and Coupling Points
by Means of Physical Proxies in 1-DoF Models

Interpolation strategies allowing to handle inputs, outputs,
and coupling points that do not match the scattering junc-
tions of a finite difference grid or a waveguide network (be
it one, two or three-dimensional) have been studied in a
number of works such as [6, 23, 24].

In an effort to integrate these concepts into the framework
of 1-DoF mass-interaction networks, we introduce the phys-
ical virtual proxy as an economical way to represent and
compute smooth interpolation between topological connec-
tions. In essence, a proxy enables to dynamically couple an
interaction point to a macro-structure (for instance a string
or a mesh with a known topological organisation). The
interaction point can therefore be placed between actual
physical masses, and move smoothly along the structures,
including at audio rates.

Excluding zero order truncation or rounding methods, the
most basic interpolation strategy for an interpolated point
p located between two grid points m1 and m2 with a nor-
malised location coefficient 0 < α < 1 as shown in Figure
2 is first order Lagrange (or linear) interpolation, which
gives coefficients:

w1 = (1− α) , w2 = α (1)



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

236

Figure 2. The first order 1D proxy, allowing for interpolated
topological connections between two masses.

This extends to the bilinear transform in the 2D case [23],
with masses m1..4 and additional coefficient β defining the
location along the second axis (cf. Figure 3):

w1 = (1− α)(1− β) , w2 = α(1− β)

w3 = (1− α)β , w4 = αβ
(2)

Certain limitations of linear interpolation are pointed out
in [6], notably possible low-pass filtering effects that could
be addressed using higher order interpolators such as cubic
Lagrange, requiring a larger stencil of points. For simplicity,
in the following we will assume first order Lagrange inter-
polation (which is also employed in the examples presented
in Section 4).

Integration of the interpolators into the mass-interaction
paradigm is as follows: the proxy p has no mass property,
and its physical position Xproxy is dynamically calculated
at each simulation step according to the ”spatial” location
given by the α and β parameters:

Xproxy =
1

N

n∑
i=1

wi.Xi (3)

Interaction forces are then calculated normally between
the proxy and the mass interacting with it (denoted mh

with position Xh) depending on the type of interaction (e.g.
spring, collision, friction, etc.) :

Fproxy = Finteraction(Xh, Xproxy)

Fh = −Fproxy

(4)

The equal and opposite interaction force is applied di-
rectly to the mass mh, whereas Fproxy (the force applied to
the proxy) is redistributed into forces applied to the actual
masses using the same interpolated weighting :

Fproxy =

n∑
i=1

Fi

Fi = wi.Fproxy

(5)

In a static regime (fixed α, β parameters) the use of a
proxy is mathematically equivalent to n weighted point-
based interactions with the n-mass underlying structure.
Displacement of the proxy results in smooth variation of
physical interaction parameters and topological connections,

Figure 3. The 2-D ”mesh” bilinear interpolation proxy,
allowing interpolated topological connections between the
four points of a rectangular mesh.

either moving inside a group of masses, or moving from
one group of masses to another.

As such, physical proxies constitute a means to approx-
imate linear or surface interactions that may be obtained
in 3D geometry (cf. Figure 1) at a fraction of the com-
putational cost, by adding ”artificial” Y and Z degrees of
freedom to move connection points dynamically within a
1-DoF physical model. Hereafter, we will discuss the inter-
est of this solution for the design of real-time large scale
models offering means for expressive control.

4. DESIGN AND IMPLEMENTATION OF THREE
PHYSICALLY-BASED VIRTUAL INSTRUMENTS

We now present three case-studies of virtual musical in-
struments developed over the last year using the mass-
interaction paradigm. For each, we will present elements
pertaining to the computational aspects (model complexity,
optimisation, benchmarking) and discuss design choices
and implementation of real-time control strategies. We will
also try to highlight the expressive potential of these instru-
ments through examples and/or by reporting their use in
recent or upcoming artistic works.

4.1 A Bowed String Drone Instrument

This instrument was designed in collaboration with the
French composer Eddy Jaeber and forms the basis of his
piece entitled ”Le Cosmos Pour Acoustique”. It features
several strings that may be bowed or plucked and whose
pitch may be altered by sliding ”fretting fingers”.

4.1.1 Physical Model and Implementation

The mass-interaction model of the instrument is shown in
Figure 4. It contains four 160-mass stiff strings, wherein
each mass is connected to its immediate neighbours via
spring dampers, and also to its second neighbours through
springs with a dedicated ”stiff” term. Bowing interactions
are connected to each string through proxies and distributed
over three application points (thus approximating non-null
bow width). The fretting finger interactions clamp strings
against a fretboard (located below) at a given length. Ad-
ditional sliding damping interactions are placed behind the
fretting point in order to dampen any residual vibrations in
the string section located behind the finger.



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

237

Figure 4. Bowed string real-time visualisation in Max/MSP.
Blue lines show the motion of each string. Finger positions
in red, bow positions in purple, listening points in green.

The instrument was implemented directly in Max/MSP
using the mi-gen~ toolkit [25], driving the physical model
with data-rate or audio-rate signals from within a patch that
also handles visualisation processes (shown in Figure 4)
and control logic such as voice allocation. The simulation
uses approximately 55% of the CPU monitor in Max/MSP 2

which, although it is non-negligible for a model of this size,
poses no problem for real-time audio computation.

4.1.2 Real-time control

A Sensel Morph device with the MIDI overlay is used to
control the model, providing precise Polyphonic Expres-
sion (MPE) information, dynamically allocating voices to
available strings. The mapping is as follows :

• Touch pressure is mapped to bowing pressure and
bow velocity.

• MIDI notes and per-note pitch bend (lateral motion)
control the finger position on the current string.

• Vertical motion is mapped to the bow position on the
string.

In pizzicato mode, note-on messages and touch pressure
are used to pull the strings back through a contact interac-
tion, and note-off messages release the contact.

4.1.3 Use in the piece ”Le Cosmos Pour Acoustique”

The composition is a sound construction built with multiple
layers of audio from the instrument. It explores various play-
ing modalities discovered by the player himself during pre-
liminary experimentation, including some rather extreme
cases : very short and high pitched strings, slowly evolv-
ing infra-bass drones, progressive shifting between string
harmonics by moving the bow position, bowing extremely
close to the bridge/finger (producing unstable ”screeching”
tones), etc. The resulting sounds do not mimic a specific
bowed instrument reference (such as the violin) but they are
highly controllable, aided by sonic and visual feedback.

4.2 A Tangible Bowed Mesh

The tangible bowed mesh came from the idea of providing
many dynamically moving interaction points with a rela-
tively simple, yet large, single acoustical structure. The

2 Test machine specifications are detailed in Section 4.2.1.

Implementation CPU Usage (Max/MSP)
mi-gen~ 100%

C++ MI basic 30%
C++ MI shaved down 22%
C++ MI autovector 20%

C++ Finite Difference 18%

Table 1. Benchmarking results for a 30 x 35 closed mesh
(total of 1050 masses), simluated at 44.1 kHz.

Figure 5. Equivalent finite difference scheme for the 2D
mass-interaction mesh. Next value to compute (red) from
current (blue) and previous (green) values.

model is a 2-dimensional mesh with closed boundary con-
ditions, excited by up to ten bowing friction interactions at
positions defined by ”mesh” proxies.

4.2.1 Implementation and benchmarking

Performance rapidly becomes a concern when simulating
meshes or plates. A Max external was therefore imple-
mented directly in C++ using the min-dev-kit package 3 .
The model is computed with a specifically-coded mass-
interaction simulation engine using static pre-allocation of
contiguous memory blocks for the model state data (posi-
tions, forces) in double-precision floating-point format.

Benchmarks for a 30 x 35 mesh were measured on a 6-
core 2.60GHz Intel Core i7-8850H CPU, compiling the Max
external with Visual Studio 2019 using the \02 optimisation
and \fp:fast floating point model flags. The results are
reported in Table 1 and discussed below:

• mi-gen~ performance is largely inferior to any of the
hand coded C++ implementations, choking at 100%.

• Standard C++ mass-interaction algorithms lower this
to 30%, and further ”shaving” of the code (avoid-
ing function calls, using pointer-based access, etc.)
brings this down to 22%.

• Algorithms can be made autovectorisation 4 ”friendly”
to some extent by simplifying loop code and using
the restrict keyword to avoid pointer aliasing.

3 http://cycling74.github.io/min-devkit/
4 an optimisation consisting in the simultaneous computation of data

organised into vectors, typically of 128, 256 or possibly 512 bits.



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

238

Figure 6. Bowed mesh model, showing active (red) and
inactive (grey) bowing points and listening points (green).
The mesh masses (in blue, turning to red as a function of
displacement) are connected to top, down, left and right
neighbours through spring dampers (not displayed).

This allows vectorising the mass updates, but not the
interactions as they require non-contiguous access
into array data. The gain is therefore quite minimal.
Manually vectorised code for the mesh topology is
not trivial, although it can be done [11, 14].

• Our mass-interaction mesh is equivalent to a ten-point
stencil explicit finite difference scheme for the 2D
wave equation (a standard 5-point Laplacian approxi-
mation for the undamped 2D wave as presented in [6],
with 5 extra points induced by the damping terms at
time n− 1), shown in Figure 5. Therefore, the posi-
tion update scheme may be expressed as a function of
current and previous positions covered by the stencil
and external forces (merging mass and interaction
terms into one update). This offers yet another slight
improvement, bringing the cost down to 18%. It is
currently the most efficient option.

Using the finite-difference implementation, mesh size can
be increased up to 70 x 70 (4900) masses, as shown in
Figure 6.

4.2.2 Real-time control

As for the bowed string instrument, interaction with the
model is handled via the Sensel Morph, this time directly
using raw contact point data: each point acts as a bow po-
sitioned at the X-Y location on the device, with bowing
velocity and pressure driven by applied contact pressure. A
video showcasing the expressive possibilities of this dynam-
ical multi-point interaction is provided 5 .

5 Video demonstrations of all three virtual instruments can be found at
the following address: http://mi-creative.eu/smc2020

4.3 A Virtual Classical Harp

The final presented instrument stems from an ongoing col-
laboration between Gipsa-Lab’s Digital Arts and Sensory
Immersions group, composer Arnaud Petit, and instrument
manufacturer CAMAC Harps. The latter have developed
an augmented electric diatonic harp, equiped with piezo
sensors for each string, offering real time per-string au-
dio channels as well as MIDI/OSC tracking. The piece
Orbis explores the capabilities of this instrument, while
confronting it with a virtual counterpart, playing with the
limits of what is physically possible to perform on both the
real and the virtual instruments.

4.3.1 Model and Implementation

Designing the virtual harp model is a matter of compro-
mise, as the scale of the instrument alone makes real-time
simulation a challenge. Among other things, simulating
sufficient brightness in the lower register calls for tense
and extremely long strings (approximately 505 masses for
the low C). What’s more, real plucked harp strings con-
tain noticeable tension effects (pitch glides in the lower
notes). The interactions between the tuning clamps oper-
ated by the pedals and the strings involve complex contacts
that may generate (wanted or unwanted) noise on the in-
strument, including from strings that are not plucked, as
they are lightly excited whenever the pedals are operated
(each pedal changes all octaves of a given natural note up
or down a semitone). And last but not least, the body of the
instrument plays a large part in its acoustical output.

The necessity for a robust real-time solution integrated
into a large musical piece alongside other audio processes
leads to pragmatic solutions to these aspects:

– Ideal linear 1D strings, scaled and tuned by numerical
resolution so that the highest mode of each string lies
at approximately 11kHz.

– Tuning the strings up and down artificially by di-
rect manipulation of the stiffness parameter when
pedal-induced alterations occur 6 . Pitch glide may be
accounted for by triggering additional exponentially
decaying stiffness terms, raising the initial pitch of
plucked strings by a velocity-dependant amount.

– Coupling via the body modelled by two ”bridge” os-
cillators, forming common termination points for the
strings. Inertia, stiffness and damping properties of
these oscillators allow tuning sympathetic resonance
throughout the instrument.

The resulting physical model contains 5500 masses for
a total of approximately 13000 modules. It is triggered
by MIDI or OSC data, either directly issued from the aug-
mented harp or from score following patches that synchro-
nise a score for the virtual harp with the score played on the
real instrument.

4.3.2 Implementation challenges: AVX2 vectorisation

While the above model does run in real time using the same
C++ framework as the bowed mesh model presented in

6 The effect in altered string brightness is barely noticeable, if at all, for
changes of the order of a semitone.



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

239

Figure 7. Mass-interaction virtual harp. Strings in red,
bridge elements and bridge coupling springs in blue, op-
tional string-barrier collision interactions in orange. Red
dots represent finger-string interaction (OSC or MIDI-
controlled excitation and damping).

the previous subsection, it lies dangerously close to 100%
CPU usage and consequently causes severe glitches when
running the low latency audio settings required for minimal
delay between the real harp player’s notes and triggered
virtual harp notes.

A final possibility to reduce computational cost without
sacrificing the model’s sound qualities is explicit AVX2
vectorisation of the physical algorithms: while the compiler
struggles to automatically vectorise code at compile-time,
such vectorised operations can be defined manually by the
user, using specific Intel AVX2 primitives to compute 4
doubles or 8 floats in a single operation. This involves
letting go of genericity and modularity and writing low-
level code tailored for speeding up a specific computation
process. This is slightly less daunting for strings than for
meshes (or worse, arbitrary topologies!) but it still requires
some mental and computational gymnastics.

The entire system of strings (excluding bridge connec-
tions) is represented as a single string composed of m256
(8 x float) aligned memory blocks for position X , velocity
V , force F , stiffness K and damping Z, with null stiffness
and damping parameters separating one actual string from
the next. A challenge for manual vectorisation resides in
the fact that 256 bit vectorised operations only work on
data that is aligned and iterates over 256 bits: while our
data structure is suitably aligned for mass algorithms, in-
teractions along a string compute forces between adjacent
masses i and i + 1, requiring a 32 bit offset that AVX in-
structions cannot handle. Our proposed solution, shown in
Figure 8, works by:

1. creating aligned ∆X and ∆V vectors by substract-
ing backward-shifted copies from X and V vectors

Figure 8. AVX2 vectorised computation scheme for the vir-
tual harp model. Reading top-to-bottom, adjacent position
values are shifted into an aligned position difference vector,
which is multiplied by the stiffness term to generate spring
forces, that are copied and opposite-shifted forwards to ac-
count to equal and opposite spring forces between adjacent
masses.

(optimised using mm256 set ps operations and
carry-over variables for data that shifts from one vec-
tor into the previous one).

2. performing vectorised computation of the string in-
teraction forces on this aligned data Fst.

3. adding the string force vector Fst and a negative
forward-shift of Fst into the mass force buffer vector
F (symmetrically to 1.) to account for equal and
opposite forces applied between adjacent masses.

4. performing vectorised computation of the new mass
position vector X from the aligned X , V and F vec-
tors (using combined multiplication and add/substract
instructions whenever possible).

Since m256 arrays are float arrays in memory, keeping
float* pointers to the addresses of the state arrays allows
to access string data for the computation of non-vectorised
elements, such as the springs connecting both ends of each
string to the bridges, damper mechanisms and so forth.

The computational gain of manual single-precision float
AVX2 vectorisation is, to say the least, considerable: the
vectorised virtual harp runs on a lean 34% in Max/MSP,
allowing for steady ultra-low buffer-sizes running alongside
other sound processes, and possibly giving leverage for
enriching the initial model (e.g. increasing string length
and stiffness for additional brightness).

These three examples highlight a number of design and
implementation choices that must be confronted on a regu-
lar basis when conceiving physically-based virtual musical
instruments, in terms of model and real-time control com-
plexity, and software implementation techniques that ensue.
In the next section, we discuss some of these aspects.



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

240

5. BALANCING MODEL, INTERACTION AND
SOFTWARE CONSIDERATIONS

5.1 Balancing model and control complexity

Traditionally, complexity and richness of acoustical vibrat-
ing structures has been the dominant concern in physically-
based sound-synthesis research, and rightly so, as it has lead
to major breakthroughs as testified by many recent works
concerning the simulation of strongly non-linear instrumen-
tal dynamics [9, 15, 16]. However, we argue that richness
of control, and in particular real-time user interaction, is of
equal importance in unleashing the full potential of physi-
cal models for sound production, as shown in works such
as [8,19]. Even simple models such as the bowed string sys-
tem of Section 4.1 may yield surprisingly expressive sound
through fine multi-DoF control of excitation and modifi-
cation gestures, allowing users to progressively discover
and assimilate the sonic possibilities of the instrument. As
another example, the mesh of Section 4.2 sounds rather
bland when simply struck, but reveals a completely differ-
ent nature when driven by continuous control of the moving
bow interactions, to the point where it is hard to believe that
it is such a rudimentary linear acoustical structure.

5.2 Balancing software genericity and performance

The three instruments discussed in Section 4 also show
that model complexity leads to important implementation
decisions: while a modular and generic model coding envi-
ronment such as mi-gen~ allows to focus on model features
rather than implementation specifics, the performance bot-
tleneck limits real-time use for large models. Specific C++
coding with static memory allocation for the model state
and various algorithmic optimisations allows for a leap
in performance, but can still be costly. And finally, low-
level manual code vectorisation can allow for a quantitative
boost, enabling very large models, but supposes completely
re-thinking the algorithms for a specific model topology.

6. CONCLUSIONS AND PERSPECTIVES

Through the complementary questions of physical mod-
elling techniques, computational cost and means for expres-
sive control, as well as the analysis of three recently de-
veloped virtual musical instruments, this work offers some
insight into various design and implementation considera-
tions that arise when developing real-time physically-based
virtual musical instruments.

The proxy elements discussed in Section 3.2 have been
integrated into the mi-gen~ Max/MSP package 7 and can
readily be used to create and creatively explore modular
mass-interaction models with extensive real-time over phys-
ical parameters, inputs, outputs and topological connection
points. Although side-effects of the first-order interpolators
used in the example models were not perceived as particu-
larly problematic or significantly audible during testing and
playing phases, higher order cubic Lagrange interpolators
will be implemented, as the additional computational cost
is very moderate.

7 https://github.com/mi-creative/mi-gen/

Given the difference in performance between automati-
cally generated C++ (whether using Max/MSP’s gen~ en-
gine, as shown in the present results, or using the Faust
environment as shown in previous work [26]) and hand-
tailored C++ simulation code, ongoing development efforts
aim to provide a high-level, modular yet efficient simulation
engine based on the prototypes developed for the bowed
plate and harp virtual instruments.

On a broader scope, the issue of efficient simulation for
large scale physical models for sound synthesis is still a very
active topic [9, 11, 14, 15]. This leads to yet another inter-
rogation: is such modelling and computational complexity
compatible with modular creative physical modelling tools,
tailored for artists, musicians, composers? While the sci-
ence of physical modelling sound synthesis propels forward
at a sustained pace, one must remain vigilant not to place
such advances beyond reach from its primary target audi-
ence. In this regard, proposing the right tools and environ-
ments allowing for mere mortals to harness the full power
of physically-based models for sound creation remains a
fundamental and exciting challenge.

Further comparison between finite difference schemes and
mass-interaction models [27] would be worth exploring, in
particular incorporating more advanced/implicit schemes
into benchmarks. Models such as the bowed mesh could
offer an interesting means to evaluate the audible effects of
numerical dispersion in such schemes as well as integration
methods for the non-linear bow interactions, both formally
and through user experiments. Finally, a more extensive
evaluation of the computational cost of 3-DoF versus 1-DoF
mass-interaction models in efficient C++ implementation
would provide a larger picture of how viable 3D models
could be for complex physically-based sound-synthesis in
the near future. Early results show exciting perspectives in
leveraging audio-rate 3D simulation to capture inherently
non-linear acoustical phenomena [7], however the compu-
tational requirements lead to believe that 1-DoF physics
simulations for large scale virtual musical instruments still
have good days ahead.

Acknowledgments

This work has been carried out with support and funding
from the French Ministry of Culture, CNRS, Grenoble INP
and Universite Grenoble Alpes.

7. REFERENCES

[1] C. Chafe, “Case studies of physical models in music
composition,” in Proceedings of the 18th International
Congress on Acoustics, 2004.

[2] C. Cadoz, “The physical model as metaphor for mu-
sical creation:” pico.. tera”, a piece entirely generated
by physical model,” in ICMC 2002-International Com-
puter Music Conference. MPublishing, 2002, pp. 305–
312.

[3] V. Välimäki and T. Takala, “Virtual musical instru-
ments—natural sound using physical models,” Organ-
ised Sound, vol. 1, no. 2, pp. 75–86, 1996.



Proceedings of the 17th Sound and Music Computing Conference, Torino, June 24th – 26th 2020

241

[4] R. Rabenstein, S. Petrausch, A. Sarti, G. De Sanctis,
C. Erkut, and M. Karjalainen, “Blocked-based physi-
cal modeling for digital sound synthesis,” IEEE Signal
Processing Magazine, vol. 24, no. 2, pp. 42–54, 2007.

[5] J. O. Smith, “Physical modeling using digital waveg-
uides,” Computer music journal, vol. 16, no. 4, pp. 74–
91, 1992.

[6] S. D. Bilbao, Numerical sound synthesis. Wiley Online
Library, 2009.

[7] J. Villeneuve and J. Leonard, “Mass-interaction physi-
cal models for sound and multi-sensory creation: Start-
ing anew,” in International Conference on Sound and
Music Computing, 2019.

[8] S. Willemsen, N. Andersson, S. Serafin, and S. Bilbao,
“Realtime control of large-scale modular physical mod-
els using the sensel morph,” in Proc. of the 16th Sound
and Music Computing Conference, 2019, pp. 275–280.

[9] S. Bilbao, M. Ducceschi, and C. Webb, “Large-scale
real-time modular physical modeling sound synthesis,”
in Proc. International Conference On Digital Audio
Effects (DAFx 2019), Birmingham, UK, 2019.

[10] J. Leonard, N. Castagné, C. Cadoz, and A. Luciani,
The MSCI Platform: A Framework for the Design and
Simulation of Multisensory Virtual Musical Instruments.
Cham: Springer International Publishing, 2018, pp. 151–
169.

[11] J. Perry, S. Bilbao, and A. Torin, “Hierarchical paral-
lelism in a physical modelling synthesis code,” Parallel
Computing: On the Road to Exascale, vol. 27, p. 207,
2016.

[12] V. Zappi, A. Allen, and S. Fels, “Shader-based physical
modelling for the design of massive digital musical in-
struments.” in New Instruments for Musical Expression,
2017, pp. 145–150.

[13] C. Cadoz, A. Luciani, and J. L. Florens, “Cordis-anima:
a modeling and simulation system for sound and im-
age synthesis: the general formalism,” Computer music
journal, vol. 17, no. 1, pp. 19–29, 1993.

[14] C. J. Webb and S. Bilbao, “On the limits of real-time
physical modelling synthesis with a modular environ-
ment,” in Proceedings of the International Conference
on Digital Audio Effects, 2015, p. 65.

[15] M. Ducceschi and S. Bilbao, “Non-iterative solvers for
nonlinear problems: The case of collisions,” in 22nd In-
ternational Conference On Digital Audio Effects (DAFx
2019), Birmingham, UK, 2019.

[16] C. Issanchou, S. Bilbao, J.-L. Le Carrou, C. Touzé, and
O. Doaré, “A modal-based approach to the nonlinear
vibration of strings against a unilateral obstacle: Simu-
lations and experiments in the pointwise case,” Journal
of Sound and Vibration, vol. 393, pp. 229–251, 2017.

[17] S. Gelineck and S. Serafin, “A practical approach to-
wards an exploratory framework for physical modeling,”
Computer Music Journal, vol. 34, no. 2, pp. 51–65,
2010.

[18] E. Berdahl, A. Pfalz, M. Blandino, and S. D. Beck,
“Force-feedback instruments for the laptop orchestra of
louisiana,” in Musical Haptics. Springer, Cham, 2018,
pp. 171–191.

[19] S. Serafin, M. Burtner, C. Nichols, and S. O’Modhrain,
“Expressive controllers for bowed string physical mod-
els,” in Proceedings of the Digital Audio Effects Confer-
ence (DAFx 2001). Limerick, Ireland, 2001.

[20] N. Castagné and C. Cadoz, “GENESIS : a Friendly
Musician-Oriented Environment for Mass-Interaction
Physical Modeling,” in ICMC 2002 - International Com-
puter Music Conference, Gothenburg, Sweden, Sep.
2002, pp. 330–337.

[21] E. Berdahl and J. Smith III, “An introduction to the
synth-a-modeler compiler: Modular and open-source
sound synthesis using physical models,” in Proceedings
of the Linux Audio Conference, 2012.

[22] A. Kontogeorgakopoulos and C. Cadoz, “Designing and
synthesizing delay-based digital audio effects using the
cordis anima physical modeling formalism,” in Inter-
national Conference on Sound and Music Computing,
2008.

[23] F. Fontana, L. Savioja, and V. Välimäki, “A modified
rectangular waveguide mesh structure with interpolated
input and output points.” in ICMC, 2001.

[24] L. Savioja and V. Valimaki, “Improved discrete-time
modeling of multi-dimensional wave propagation using
the interpolated digital waveguide mesh,” in 1997 IEEE
International Conference on Acoustics, Speech, and
Signal Processing, vol. 1. IEEE, 1997, pp. 459–462.

[25] J. Leonard and J. Villeneuve, “mi-gen˜: An efficient
and accessible mass-interaction sound synthesis tool-
box,” in International Conference on Sound and Music
Computing, 2019.

[26] J. Leonard, J. Villeneuve, R. Michon, Y. Orlarey, and
S. Letz, “Formalizing Mass-Interaction Physical Model-
ing in Faust,” in 17th Linux Audio Conference (LAC-19),
Stanford, United States, Mar. 2019.

[27] P. J. Christensen and S. Serafin, “Graph based physical
models for sound synthesis,” in International Confer-
ence on Sound and Music Computing, 2019.


