1	Moult-related Reduction of Aerobic Scope in Passerine Birds
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	William A. Buttemer ¹ , Silke Bauer ² , Tamara Emmenegger ² , Dimitar Dimitrov ³ , Strahil
13	Peev ³ , and Steffen Hahn ²
14	
15	
16	
17	
18	
19	
20	¹ School of Biological Sciences, University of Wollongong, Wollongong 2522, Australia.
21	² Department of Bird Migration, Swiss Ornithological Institute, Sempach 6204, Switzerland
22	³ Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2
23	Gagarin Street, Sofia 1113, Bulgaria
24	
25	
26	
27	
28	
29	
30	
31	
32	Keywords: avian moult energetics, aerobic scope, resting metabolic rate, maximum
33	metabolic rate, Passer domesticus, Passer hispaniolensis
34	monorente rate, raiser aomesticais, raiser mispaniorensis
35	Summary: We provide the first evidence that birds experience significant reductions in
36	aerobic capacity while moulting. This outcome exacerbates performance limitations due to
37	known decreased flight efficiency during feather replacement.
38	known deereased might emerency during reather replacement.
39	Running Title: Aerobic Scope and Avian Moult
40	Kunning The. Meloble Scope and Avian Moult
41	
42	
43	
43 44	
44 45	Corresponding Authors
	Corresponding Author:
46	William A. Buttemer
47	buttemer@uow.edu.au
48	

- 48 Abstract
- 49

It is well established that the nutrient and energy requirements of birds increase substantially 50 51 during moult, but it is not known if these increased demands affect their aerobic capacity. We 52 quantified the absolute aerobic scope of house and Spanish sparrows, Passer domesticus and 53 *P. hispaniolensis*, respectively, before and during sequential stages of their moult period. The 54 absolute aerobic scope (AAS) is the difference between maximum metabolic rate (MMR) 55 during peak locomotor activities and minimum resting metabolic rate (RMR_{min}), thus 56 representing the amount of aerobic power above that committed to maintenance needs 57 available for other activities. As expected, RMR_{min} increased over the moult period by up to 58 40 and 63% in house and Spanish sparrows, respectively. Surprisingly, the maximum 59 metabolic rates during exercise also decreased during moult in both species, declining as 60 much as 25 and 38% compared with pre-moult values of house and Spanish sparrows. 61 respectively. The concurrent changes in RMR_{min} and MMR during moult resulted in 62 significant decreases in AAS, being up to 32 and 47% lower than pre-moult levels of house 63 and Spanish sparrows, respectively, during moult stages having substantial feather 64 replacement. We argue that the combination of reduced flight efficiency due to loss of wing 65 feathers and reduced aerobic capacity places moulting birds at greater risk of predation. Such 66 performance constraints likely contribute to most birds temporally separating moult from 67 annual events requiring peak physiological capacity such as breeding and migration. 68

69 INTRODUCTION

70

71 Reproduction and feather replacement are two of the most energy- and nutrient-demanding 72 periods in the annual cycle of birds (Murphy 1996) and most seasonally breeding birds have hormonal mechanisms that temporally separate breeding and moult periods (Schleussner et 73 74 al. 1985; Dawson and Sharp 1998; Dawson 2006). Such segregation better assures provision 75 of critically needed nutrients during each of these life stages, which has important fitness 76 implications. In the case of moult, inadequate energy and nutrient supply or elevated 77 physiological stress during moult could result in compromised quality of feathers (Murphy et 78 al. 1988; DesRochers et al. 2009). This has negative consequences for a diverse range of 79 functions that feathers serve, including aerodynamic, insulation, sexual signalling, and 80 protection from environmental exposure. Because structural flaws in feathers will persist 81 until they are replaced in the next moult period (usually a year later), birds will be 82 functionally penalised for a full year, which reduces their likelihood of surviving until the 83 next breeding opportunity (e.g., Nilsson and Svensson 1996) and, if they do survive, 84 potentially having less success in attracting a mate due to poorer sexual signalling 85 (Fitzpatrick 1998; Bortolotti et al. 2006). 86 The nutrient requirements of moult are substantial, as feathers contain more than 90% 87 protein, mainly β-keratins (McKittrick et al. 2012), comprise about 7% of a bird's body mass 88 (Turček 1965), and about 25% of its total protein content (Murphy 1996). In addition to the 89 increased need for protein, the process of moult provokes significant elevations in the 90 maintenance energy requirements of birds in inverse relation to their body mass (Hoye and 91 Buttemer 2011). The minimum energy needs of endothermic animals can be evaluated by

92 measuring rates of oxygen consumption when the animal is post-absorptive, asleep during the

93 rest-phase of its daily cycle, and exposed to thermoneutral temperatures. These rates 94 represent an animal's minimum maintenance costs and are termed basal metabolic rate 95 (BMR) when animals are non-growing and non-reproductive (Hulbert and Else 2004), but are 96 called minimum resting metabolic rate (RMR_{min}) at other life-history stages. Moult is 97 associated with significant increases in RMR_{min} and differences between these rates and those 98 measured as BMR prior to moult are typically used to determine the cost of feather synthesis 99 (Dietz et al. 1992; Lindström et al. 1993; Klaassen 1995; Hoye and Buttemer 2011). 100 Another aspect of increase in RMR_{min} that has not been addressed is its potential to affect the 101 absolute aerobic scope (AAS) of moulting birds. Absolute aerobic scope is the difference 102 between maximum metabolic rate (MMR) during peak locomotor activity and resting 103 metabolic rate, thus representing the amount of aerobic power above that committed to 104 maintenance needs available for other activities (Brett 1972). This expression of aerobic 105 scope differs from factorial aerobic scope (FAS), which is a unitless ratio of MMR to 106 RMR_{min}. Although FAS is typically used for comparison of aerobic expansibility between 107 species (e.g., Hinds et al. 1993), it has far less functional relevance for quantifying the 108 aerobic performance consequences of intraspecific variation of RMRmin and MMR. For 109 example, a doubling of RMR_{min} with no change in MMR has the same FAS as a halving of 110 MMR with an invariant RMR_{min}. By contrast, the AAS associated with these conditions 111 would differ and reveal the actual amount of aerobic power in excess of resting requirements 112 that is available for activity. 113 Decreases in AAS will directly result from rises in RMR_{min} unless MMR is proportionately 114 increased. This could result in greater reliance on anaerobic metabolism during activities 115 requiring maximal power and, consequently, a higher likelihood of fatigue and slower rate of

116 recovery (Marras et al. 2010; Killen et al. 2014). Although raising MMR during moult will

117 overcome decreases in AAS, there are potential constraints for birds achieving this. Much of 118 the rise in RMR_{min} of birds is attributed to greatly increased rates of protein turnover that 119 facilitate uninterrupted daily feather growth (Murphy 1996). Measurements of protein 120 turnover in white-crowned sparrows (Zonotrichia leucophrys gambelii) reveal 72% higher 121 rates of daily protein turnover in moulting versus non-moulting birds, with the majority of the 122 protein sourced from skeletal muscles (Taruscio and Murphy 1995). Because MMR of 123 endotherms is highest during locomotion (Hinds et al. 1993; Bishop 1999), it requires 124 maximal functioning of a suite of biochemical, physiological and morphological processes to 125 meet the peak aerobic demands of locomotor muscles. Thus, significant rises of protein 126 turnover rates during moult that include myofibrillar proteins of locomotor muscles and 127 possibly affect mitochondrial components may limit attainment of MMR at this time. We 128 address questions of how RMR_{min}, MMR, and AAS covary during a moult cycle of two 129 sympatric congeneric species, the house sparrow Passer domesticus and the Spanish sparrow 130 P. hispaniolensis.

131 In sparrows, primary feathers are moulted and replaced in sequence, starting at primary 1 and 132 finishing with primary 10, with the primary replacement period largely coincident with 133 replacement of all feathers during prebasic moult (Zeidler 1966). The sparrow species in our 134 study have the same moult cycle, exhibit similar morphometry (Alonso 1984), and breed 135 sympatrically in southeastern Europe. They differ substantially, however, in one aspect of 136 their life history: Spanish sparrows breeding in this region undertake obligatory migration 137 after completing moult, whereas house sparrows are sedentary (Hahn et al. 2018). As the 138 physical qualities of feathers of migrating species are superior to those of sedentary birds 139 (Weber et al. 2004; de la Hera et al. 2010), this raises the possibility of different protein 140 requirements for feather replacement and other post-breeding morphological adjustments

between these two species and, thus, potential differences in extent of variation in RMR_{min}
and MMR during moult.

143

144 MATERIAL and METHODS

145

146 Experimental Animals

147

148 All house and Spanish sparrows used for this study were captured using mistnets near the 149 Biological Experimental Station Kalimok and the adjacent village of Nova Cherna (44.00°N 150 26.46°E, lower Danube basin in northern Bulgaria). These local birds were captured between 151 early July and late August in three distinct life-stage periods: Period 1 from 1-18 July 152 representing late-breeding, pre-moult; Period 2 from 25 July-10 August representing early 153 moult; and Period 3 from 17-30 August representing mid- through late-moult stages (Fig. 1). 154 We tried to confine our collections to adult male birds to minimise potential confounding 155 effects due to sex or age (100% males in P. hispaniolensis; 72 adults and 5 fully grown first-156 year birds; 86% males in *P. domesticus*, 42 adults and 6 fully grown first-year birds). We 157 measured wing length and scored body fat and flight muscle visually using standardised 158 procedures (sensu Eck et al 2011), with fat scored on a scale from 0 to 8 and muscle from 0 159 to 3. Additionally, we determined the stage of primary (flight) feather moult using a simple 160 eleven-level score (primary moult score; MS_p), where zero indicates no primary moult/all feathers are old, and score 10 indicates that the 10th primary is renewed. Following 161 162 measurements, birds were fitted with uniquely identifiable leg rings and then transferred to an 163 outdoor aviary (2.8 x 2.6 x 1.8m) that had vegetation providing multiple perches and free 164 access to commercial finch seed mix and water. Due to the logistical constraints of running 165 several experiments concurrently, birds differed in the duration of their post-capture

maintenance in the aviary. Of the 124 sparrows used for this experiment, 81 had metabolic
measurements made on the day of capture, 21 one day post capture (DPC), nine two SPC,
three after three DPC, and nine after four DPC.

169

170 Experimental Protocols

171 Prior to measuring resting metabolic rate (RMR_{min}, see below), birds were transferred to 172 small holding cages permitting free access to water, but without seed. They remained in these 173 cages for 3 hours before they were weighed and placed in respirometers at ca. 21:00 h to 174 ensure they were post-absorptive during the period of RMR_{min} determination. Upon removal 175 from the respirometers at ca. 06:00, birds were reweighed and placed in holding cages and 176 given free access to seed and water for a minimum of 4 h and a maximum of 6 h before 177 evaluating their maximum metabolic rates (MMR; see below). At the end of the MMR 178 measurement, we reweighed the birds, measured their blood haemoglobin content using a 179 HemoCue Hb201 following puncture of a brachial vein with a 26-gauge needle, confirmed 180 their moult status, and then released them about 10-min later.

181

182 Metabolic Rate Measurements

We measured RMR_{min} at chamber air temperatures regulated at 30°C, which is known to be thermoneutral for house sparrows (Hudson and Kimzey 1966). Birds were placed in 4-litre respirometer chambers, each fitted with a perch and provided compressed atmospheric air dried through a silica gel column and maintained at 500 ml min⁻¹ by mass flow controllers (Tylan Model FC-280S). All flow controllers were periodically calibrated using a Gilian Gilibrator (Sensidyne, St. Petersburg, Fla., USA). Oxygen consumption rates (VO₂) were

evaluated by comparing oxygen content of inlet and outlet air for each chamber after removal

190 of water vapour and CO₂ by passing air through Drierite and soda lime, respectively, before 191 being directed to 2 Oxzilla oxygen analysers (Sable Systems) by an electronic stream selector 192 (Sable Systems Respirometer Multiplexer V 2.0). Voltage outputs from the oxygen analysers were recorded at 5-s intervals and each bird was sampled for 27 min h⁻¹. Inlet air was 193 194 sampled between each 27-min period of bird metabolic measurement to establish a reference 195 baseline and assigned a value of 20.95% oxygen as found in dry CO2-free air. All reported 196 values of oxygen consumption rates are based on readings taken at least 8 h after feeding and 197 have been calculated using Eqn. 2 of Hill (1972): $\dot{V}O_2 = STP$ flow * ((FiO_2 - FeO_2)/(1-FeO_2)), where STP flow = 0.9996 (mass flow values) 198 to account for 0.04% atmospheric CO_2 , FiO_2 = fractional oxygen content of inlet chamber 199 200 air, and FeO₂ = fractional oxygen content of effluent chamber air. Resting oxygen consumption rate for each bird represents the lowest 5-min average of VO2 recorded from 201 202 sampling intervals displaying stable readings for the majority of the 27-min measurement 203 period. Maximum metabolic rates (MMR) were determined from VO₂ during exercise in a hop-204 205 flutter wheel (Chappell et al. 1999; McKechnie and Swanson 2010), where birds were 206 encouraged to repeatedly take off. The effective volume of the MMR system was 9.25 l, with 207 compressed atmospheric air dried through a silica gel column supplied at a rate of 5000 ml min⁻¹ using a calibrated mass-flow controller (MKS Instruments). The rotation speed of the 208 209 wheel was manually adjusted to each bird's behaviour and fully stopped when the bird could 210 not hold its position in the wheel. Oxygen consumption during exercise was continuously

211 recorded with an Oxzilla II differential oxygen analyser or an FC1 oxygen analyzer (both

212	Sable Systems, NV, U.S.A.), using inlet air as a reference at the start and end of each
213	measurement. Sampled air was drawn through a tube containing Drierite and soda lime to
214	remove water vapour and CO ₂ respectively, before reaching the oxygen analyser The
215	maximum $\dot{V}O_2$ was computed from the highest instantaneous oxygen consumption values
216	measured over a 30s interval of exercise, after baseline correction and smoothing the data to
217	remove electrical noise (1s smoothing interval over 3 cycles). All data were processed using
218	LabAnalystX (http://warthog.ucr.edu) software to obtain instantaneous oxygen consumption
219	rates. Absolute aerobic scope (AAS) for each bird was computed as the difference between
220	MMR and its RMR _{min} .
221	Data Selection
222	Our requirement that RMR_{min} be limited to 5-min averages measured within periods of stable
223	$\dot{V}O_2$ recordings lasting more than half of the 27-min measurement period revealed that 12
224	Spanish sparrows and 3 house sparrows were less restful than their counterparts.
225	Consequently, data from these birds were eliminated from our RMR_{min} and associated AAS

determinations. As all other measurements made on these birds were valid, data from them

are included in MMR results and in all of the morphological analyses. One Spanish sparrow

228 was unreactive during the hop-flutter period and therefore was not included in the MMR

analyses.

230

231 Statistical analyses

We ran linear models using the lm package of R (version 3.4.3; 2017) to relate MSp to blood
haemoglobin, body mass, fat and muscle scores. Because metabolic rate is known to scale as
a power function of body mass (Hulbert and Else 2004), RMR_{min}, and MMR and body

masses accompanying these measurements were log-transformed. In addition to body mass, linear models examining the relation of R_{min} and AAS to MSp included covariates to account for time in captivity (days post capture, DPC). Linear models for MMR had an additional covariate to account for differences in body mass gained between the end of RMR_{min} measurements and the start of MMR determinations. The lm procedures evaluate the statistical contribution each predictor covariate makes in the linear model by determining estimates and standard errors for each covariate and the resultant t values.

242

243 **RESULTS**

244 The primary moult score (MSp) varied substantially between periods of bird collection, with

both species showing no moult during period one, but substantial moult over the next two

246 periods. Spanish sparrows had higher MS_p than house sparrows during periods 2 and 3,

247 which indicates they had an earlier onset of moult and, thus, were at different phases of their

248 overall moult cycle (Fig. 1A).

249 Fasted body mass (_fM_b) measured after overnight RMR_{min} determinations varied significantly

with MS_p in both house sparrows (t_{46} =2.878, p=0.006) and Spanish sparrows (t_{75} =3.682,

251 $p=4.34 \times 10^{-4}$), with fMb of both species increasing above pre-moult levels at later moult stages

252 (Fig. 2A).

Fat scores of house sparrows were invariant throughout moult ($t_{46}=0.947$, p=0.349) but

increased significantly in Spanish sparrows in relation to MS_p ($t_{75}=3.912$, $p=2.0x10^{-4}$),

255 particularly at late-moult stages.

256 Muscle scores did not vary with MS_p for either species (t_{46} =1.378, p=0.175 and t_{75} =1.126,

257 p=0.264 in house and Spanish sparrows, respectively).

- Blood haemoglobin content was unaffected by moult status of house sparrows (t_{46} =-0.171,
- p=0.865) but showed a significant relation with primary moult score (MS_p) in Spanish
- sparrows ($t_{75}=3.15$, p=0.003), falling below pre-moult levels after the start of moult, but
- rising above pre-moult levels from MS_p 6 onwards (Fig. 2B).
- 262 A shared pattern of variation in RMR_{min} and MMR in relation to MS_p is clearly evident in
- Fig. 3. For both species, RMR_{min} rises moderately after primary 2 is being replaced, and then
- is substantially elevated from primary 6 onwards (Fig. 3A). Linear modeling revealed that
- 265 RMR_{min} of house sparrows was significantly affected by MS_p (t_{41} =5.549, p=1.89x10⁻⁶) but
- 266 not by body mass (t_{41} =1.835, p=0.073), number of days post capture (DPC, t_{41} =-1.341,
- 267 p=0.187), or sex (t_{41} =0.513, p=0.611). For Spanish sparrows, RMR_{min} was significantly
- 268 affected by MS_p (t_{61} =6.16, p=6.28x10⁻⁸), body mass (t_{61} =4.864, p=8.46x10⁻⁶), as well as DPC
- 269 $(t_{61}=-2.028, p=0.047)$. Comparison of premoult and moult RMR_{min} values of birds measured
- the day of capture, house sparrows had a 40% increase at MS_p 6 and Spanish sparrows
- 271 showed a 63% increase at MS_p 7.
- 272 MMR declined from pre-moult levels between replacement of primaries 4 and 7 by house
- sparrows and between 4 and 8 in Spanish sparrows (Fig. 3A). MMR of house sparrows was
- significantly affected by body mass (t_{43} =2.298, p=0.026) and DPC (t_{43} =3.302, p=0.002),
- 275 marginally by MS_p (t₄₃=-2.004, p=0.051), but not by differences in amount of body mass
- 276 gained between the end of RMR_{min} and start of MMR measurements (t_{43} =-1.272, p=0.210).
- For Spanish sparrows, MMR was strongly affected by both MS_p (t_{71} =-3.889, p=2.24x10⁻⁴)
- and body mass ($(t_{71}=3.015, p=0.004)$) but not DPC ($(t_{71}=1.888, p=0.063, or body mass$
- changes between RMR_{min} and MMR determinations ($(t_{71}=-0.163, p=0.871)$).
- 280 The coincidence of falling MMR with rises in RMR_{min} during moult progression resulted in
- AAS being lower than pre-moult values from replacement of primary 4 onwards in both

282	species (Fig. 3B), with MS_p significantly affecting AAS of both house and Spanish sparrows
283	$(t_{41}=-2.311, p=0.026 \text{ and } t_{60}=-4.667, p=1.76x10^{-5})$, respectively. DPC strongly influenced
284	AAS in house ((t_{41} =3.429, p=0.001) and Spanish sparrows ((t_{60} =2.736, p=0.008), whereas
285	body mass had a significant effect on AAS of Spanish sparrows (t_{60} =2.325, p=0.023), but
286	only a marginal effect on house sparrow AAS ($t_{41}=2.011$, $p=0.051$).
287	Both MMR and AAS reached their nadirs during replacement of primary 8 in Spanish
288	sparrows and primaries 7 and 8 in house sparrows (combined due to low sample sizes).
289	Comparison of individual measurements at these late stages of moult with those of their pre-
290	moulting counterparts sharing the same DPC reveal MMR and AAS to respectively average
291	38 and 47% lower than pre-moult levels in Spanish sparrows, and 25 and 32% lower in house
292	sparrows (Figs. 3A and B).

294 **DISCUSSION**

295

296 Avian moult has long been associated with significant rises in protein and energy 297 requirements (Murphy 1996), however this is the first study to demonstrate that moulting 298 birds also experience substantially reduced aerobic scope due to coincident increases in 299 RMR_{min} and declines in MMR. Our conclusion rests on the assumption that MMR elicited by 300 our exercise method is representative on an individual's aerobic capacity. Because peak 301 levels of exercise performance can be influenced as much by a subject's motivation as by 302 their physiological capability, attempting to identify underlying causes of performance 303 variation can be problematic. Our use of freshly captured free-living birds alleviates these 304 uncertainties as most birds were very reactive to our presence. Although the hop-flutter wheel 305 had transparent sides, birds settled quickly when it was covered with a dark cloth. Following

306 this adjustment period, the cover was removed and most birds responded immediately with 307 maximal escape flights interspersed with hopping until becoming fatigued. Surprisingly, 308 MMR in these birds did not differ from that of birds initiating their period of MMR 30 sec or 309 more after the start of the measurements. Thus our protocol appeared to elicit similar periods 310 of escape effort among birds, but with varying times of onset. The MMR we measured for 311 house sparrows is higher than that reported for birds residing in SE Australia (Chappell et al. 312 1999; Buttemer et al. 2008) but in agreement with measurements of sparrows from South 313 Dakota (Zhang et al. 2015). These MMR differences partly reflect the larger body sizes 314 associated with sparrows from highly seasonal habitats (Murphy 1985). Nevertheless, a 315 question remains regarding the extent to which such MMR measurements (sensu McKechnie 316 and Swanson 2010) reflect the aerobic capacity of birds. Aerobic scope of endothermic animals is traditionally based on the difference between \dot{V} 317 O₂max and RMR_{min} (or BMR), where VO₂max is the highest rate of oxygen consumption 318 319 that an animal can achieve during progressively increased locomotory effort (Taylor 1980). 320 These measurements are typically made by varying treadmill speed and inclination for

running animals, but measuring upper limits of flight costs are mechanically constrained by

322 attaining the laminar-flow wind speeds required to elicit peak flight costs. Studies successful

323 in provoking VO₂max in birds include metabolic rate measurements of ruby-throated

324 hummingbirds (Archilochus colubris) while hovering in a hypodense atmosphere (Chai &

325 Dudley 1999) and budgerigars flying at a 5° angle of ascent at 42 km h⁻¹ (Tucker 1968).

326 Coupling their results with BMR measurements for the same species (Lasiewski 1963,

327 Buttemer et al. 1986) reveals FAS values of 15.2 for the hummingbirds and 19.8 for the

328	budgerigars. In our study, FAS was 13.5 and 11.6 in pre-moulting house and Spanish
329	sparrows, respectively. Although the MMR levels reached by birds in the hop-flutter wheel
330	are likely lower than $\dot{V}O_2max$ values that they can attain under free-living conditions, we
331	believe our MMR measurements are indicative of individual aerobic capability for the
332	following reasons: firstly, individual MMR measurements have been shown to be highly
333	repeatable over time, implying that individuals tested with the hop-flutter method reach
334	consistent aerobic limits (Chappell et al. 2010; Careau et al. 2015); secondly, the MMR of
335	free-living sparrows transferred to small cages restricting locomotor activities progressively
336	declined as found for $\dot{V}O_2max$ of humans after reducing aerobic exercise training (Neufer
337	1989); thirdly, the FAS of sparrows in our study were comparable to the \dot{VO}_2 /BMR ratios of
338	14.4 measured for budgerigars flying level at 42 km h ⁻¹ (Tucker 1968; Buttemer et al. 1986)
339	and 11.4 for starlings (Sturnus vulgaris) flying level at 50 km h ⁻¹ (Torre-Bueno and
340	Larochelle 1978; Geluso and Hayes 1999); and lastly, all sparrows tested were physically
341	exhausted at the conclusion of their exercise bout.
342	The extent of RMR_{min} increase that we measured in moulting sparrows was fully expected
343	and is consistent with the 54% increase in RMR_{min} of similarly sized white-crowned sparrows
344	during peak moult (Schieltz and Murphy 1997). By contrast, no study has explicitly
345	examined moult effects on avian MMR and AAS and we were surprised by the magnitude of
346	their decline. Spanish sparrows had greater moult-related declines in MMR and AAS than
347	house sparrows, but our limited sample size for house sparrows in advanced stages of moult
348	precludes firm conclusions or assignment of functional significance to the interspecific
349	differences we found. Nevertheless, both species had greatest decreases in AAS and MMR at

350 moult stages associated with substantial feather replacement, which suggests common 351 underlying causes. Identifying the factors functionally responsible for these variations will 352 require additional investigation, but it is worthwhile considering possible mechanisms. 353 The onset of moult in birds is associated with significant increases in thyroxine (T_4) secretion 354 (McNabb 2007) and plasma T_4 levels of up to 54% above pre-moult values have been 355 reported for house sparrows (Smith 1982). Combining evidence that plasma T₄ levels vary 356 with moult intensity in red knots (Calidris canutus canutus; Jenni-Eiermann et al. 2002; 357 Vezina et al. 2009) with research finding that T_4 and its deiodinated derivative T_3 directly 358 affect rates of protein synthesis and degradation in avian muscles (Hayashi et al. 1991; 359 Hayashi et al. 2009), locomotor muscle protein turnover rates would be expected to vary 360 directly with moult intensity. Concurrent rises in T_3 would promote increased RMR through 361 its actions on multiple cellular processes that are identified as major components of 362 maintenance energy costs (Rolfe and Brown 1997). Measurements of 3-methylhistidine (3-363 MH) daily excretion rates, a biomarker of myofibrillar protein breakdown, were 72% and 364 63% higher during peak moult in white-crowned sparrows and house sparrows, respectively, 365 than in non-moulting birds (Taruscio and Murphy 1995; Buttemer, Addison, and Klasing, 366 unpubl. data). Our study found that declines in MMR were most pronounced between 367 replacement of primary feathers 4 through 8 (Fig, 3), which corresponds with the period of 368 greatest extent of overall feather replacement for both sparrow species (Zeidler 1966; Alonso 369 1984). While the correspondence between heightened muscle protein turnover rates and 370 decreased MMR remains correlative, it does warrant examination of muscle protein turnover 371 rates in relation to locomotor muscle composition and mitochondrial characteristics pertinent 372 to aerobic capabilities throughout moult.

373 Another way by which moult could affect AAS is through associated decreases in activity. 374 Some bird species undergoing extensive moult confine their daily activities to foraging early 375 and late in the day and seek concealment at most other times (e.g., Vega Rivera et al. 1998, 376 Heise and Rimmer 2000). A field study of bullfinches (Pyrrhula pyrrhula) found that capture 377 rates were substantially lower for moulting adults with primary moult scores between 4 and 378 8, signifying a dramatic decrease in daily activity ((Newton 1966). Newton (1966) also noted 379 that captive non-moulting bullfinches were actively flying and singing in aviaries throughout 380 the day, whereas moulting birds were active only while feeding, spending most of the day 381 resting. Although we did not characterise activity patterns of either sparrow species at our 382 study site, aerobic capacity is expected to decrease with reduction in the frequency and extent 383 of locomotor activity. This is evidenced by the aerobic scope of wild-caught house sparrows 384 declining with time being held in small cages, whereas the FAS of sparrows maintained in 385 flight aviaries did not differ from free-living counterparts (Buttemer et al. 2008). 386 Furthermore, the leg and pectoral muscle masses of control sparrows in that experiment were 387 unaffected by cage size, confirming that substantial changes in AAS can occur in the absence 388 of changes in locomotor muscle size. The extent to which changes in activity affect AAS 389 during moult could be examined by fitting free-living or flight-cage housed birds prior to 390 moult with 3-axis accelerometers and comparing the relations between frequency and extent 391 of activity level with RMR_{min} and MMR determinations over the course of moult. 392 Irrespective of the mechanisms responsible for decreased AAS in moulting sparrows, this 393 outcome exacerbates performance limitations associated with reduced flight efficiency during 394 flight feather replacement. During moult, loss of remiges reduces wing surface area, resulting 395 in less effective transfer of metabolic power input to mechanical power output (Chai and 396 Dudley 1999). This imposes greater aerobic demand for the same level of flight performance

397	at a time when the aerobic scope for such activity is reduced, thus placing moulting birds at
398	greater risk of predation. Our findings invite further exploration of moult-related effects on
399	AAS and how these vary in relation to moult rate and body size. Such studies will provide
400	further insight into the functional significance of temporal separation of moult from annual
401	events requiring peak physiological capacity such as breeding and migration (Wingfield
402	1998).
403	

- Acknowledgements: We thank Pavel Zehtindjiev for facilitating our research at Kalimok
 Station and Martin Marinov, Katrina Ivanova, and Mihaela Ilieva for animal care assistance.
 All experimental procedures and animal care were carried out under the permission and
 guidelines of the Bulgarian Academy of Sciences and the Bulgarian Ministry of Environment
 and Waters (no. 627/30.03.2015). All birds were released at the end of study. This study is
- 409 report No. 65 of the Biological Experimental Station'Kalimok'.
- 410 411

Author contributions: S.H., S.B. and W.A.B. developed the conceptual framework and
analysed the data. S.H., T.E. and W.A.B. made metabolic measurements. S.H., S.B. and
W.A.B. wrote the manuscript. D.D., S.P., S.H., T.E. and W.A.B. captured birds and made
morphological measurements.

- 416
- 417

418 **Funding:** This study was supported by the Swiss National Science Foundation

- 419 (31003Å_160265) to S.B. and S.H.
- 420

421 Compliance and ethical standards:422

423 Conflict of interest: All authors discussed and approved the manuscript. And have no
424 competing interests.

426	
427	

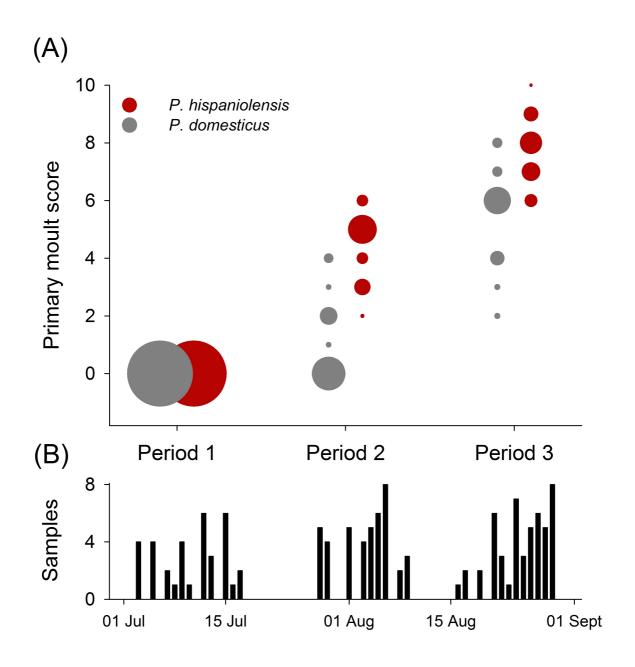
747	
428	Literature Cited
429	
430 431 432	Alonso JC (1984) Zur Mauser Spanischer Weiden- und Haussperlinge (<i>Passer hispaniolensis</i> und <i>domesticus</i>). J Orn 125:209-223
433	und <i>uomesticus</i>). 5 Oni 125.267-225
433	Dishan CM (1000) The maximum assuran consumption and corphic scope of hirds and
434 435 436	Bishop CM (1999) The maximum oxygen consumption and aerobic scope of birds and mammals: getting to the heart of the matter. Proc R Soc Lond B 266:2275-2281
437 438 439	Bortolotti GR, Blas J, Negro JJ, Tella JL (2006) A complex plumage pattern as an honest social signal. Anim Behav 72:423-430
440 441 442	Brett JR (1972) The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Resp Physiol 14:151-170.
442	Buttemer WA, Hayworth AM, Weathers WW, Nagy KA (1986) Time-budget estimates of
444	avian energy expenditure: Physiological and meteorological considerations. Physiol Zool
444	59:131-149
	39.131-149
446 447	Buttemer WA, Warne S, Bech C, Astheimer LB (2008). Testosterone effects on avian basal
447	metabolic rate and aerobic performance: facts and artefacts. Comp Biochem Physiol
	1 1 2
449 450	150A:304-210
450 451	Correspond V. Howe DL O'Durver TW. Duttemor WA (2014) Among and within individual
451	Careau V, Hoye BJ, O'Dwyer TW, Buttemer WA (2014) Among- and within-individual
452	correlations between basal and maximal metabolic rates in birds. J Exp Biol 217: 3593-
453	3596
454 455	Choi D. Dudley D. (1000) Maximum flight garfarmanas of hyperinghinday conscition
455 456 457	Chai P, Dudley R (1999) Maximum flight performance of hummingbirds: capacities, constraints, and trade-offs. Am Nat 153:398-411
458	Chappell MA, Bech C, Buttemer WA (1999) The relationship of central and peripheral organ
458 459	masses to aerobic performance variation in house sparrows. J Exp Biol 202:2269-2279
	masses to aerobic performance variation in nouse sparrows. J Exp Biol 202.2209-2279
460	Channell MA Several LE Signi L Colomon SW Kooger L Dongio C (2011) Appendia
461	Chappell MA, Savard J-F, Siani J, Coleman, SW, Keagy, J, Borgia G (2011) Aerobic
462	capacity in wild satin bowerbirds: repeatability and effects of age, sex and condition. J
463	Exp Biol 214:3186-3196
464	
465	Dawson A (2006) Control of molt in birds: Association with prolactin and regression in
466	starlings. Gen Comp Endocrinol 147:314-322
467	
468	Dawson A, Sharp PJ (1998) The role of prolactin in the development of reproductive
469	photorefractoriness and postnuptial molt in the European starling (<i>Sturnus vulgaris</i>).
470	Endocrinol 139:485-490
471	

472 de la Hera I, Hedenstrom A, Pérez-Tris J, Tellería JL (2010) Variation in the mechanical 473 properties of flight feathers of the blackcap Sylvia atricapilla in relation to migration. J 474 Avian Biol 41:342-347 475 476 DesRochers DW, Reed JM, Awerman J, Kluge JA, Wilkinson J, van Griethuijsen LI, Aman 477 J, Romero LM (2009) Exogenous and endogenous corticosterone alter feather quality. 478 Comp Biochem Physiol 152A:46-52 479 480 Dietz MW, Daan S, Masman D (1992) Energy requirements for molt in the kestrel Falco 481 tinnunculus. Physiol Zool 65:1217-1235 482 483 Eck S, Fiebig J, Fiedler W, Heynen I, Nicolai B, Töpfer T. van den Elzen R, Winkler R, 484 Woog, F (2011) Vögel vermessen/measuring birds. Deutsche Ornithologen-Gesellschaft. 485 Christ Media Natur, Minden 486 487 Fitzpatrick S (1998) Colour schemes for birds: structural coloration and signals of quality in 488 feathers. Ann Zool Fenn 35:67-77 489 490 Geluso K, Hayes JP (1999) Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol Biochem Zool 72:189-197 491 492 493 Hahn S, Dimitrov D, Emmenegger T, Ilieva M, Peev S, Zehtindjiev P, Briedis M (2019) 494 Migration, wing morphometry and wing moult in Spanish and house sparrows from the 495 eastern Balkan Peninsula. J Ornithol 160: 271-274 496 497 Hayashi K, Kirihara D, Tomita Y (1991) Effects of hypo- and hyperthyroidism on the rates of 498 muscle protein synthesis and breakdown in cockerels. Anim Sci Technol (Jpn) 62:109-113 499 500 Hayashi K, Kuroki H, Kamizono T, Ohtsuka A (2009) Comparison of the effects of thyroxine 501 and triiodothyronine on heat production and skeletal muscle breakdown in chicken. J Poult 502 Sci 46:212-216 503 504 Heise CC, Rimmer, CC (2000) Definitive prebasic molt of gray catbirds at two sites in New 505 England. Condor 102:894-904 506 507 Hinds DS, Baudinette RV, Macmillen RE, Halpern EA (1993) Maximum metabolism and the 508 aerobic factorial scope of endotherms. J Exp Biol 182:41-56 509 510 Hoye BJ, Buttemer WA (2011) Inexplicable inefficiency of avian molt? Insights from an 511 opportunistically breeding arid-zone species, *Lichenostomus penicillatus*. PLoS One 6(2): 512 e16230 513 514 Hudson JW, Kimzey SL (1966) Temperature regulation and metabolic rhythms in 515 populations of the house sparrow, Passer domesticus. Comp Biochem Physiol 17:203-217 516 517 Hulbert AJ, Else PL (2004) Basal metabolic rate: History, composition, regulation, and 518 usefulness. Physiol Biochem Zool 77:869-876

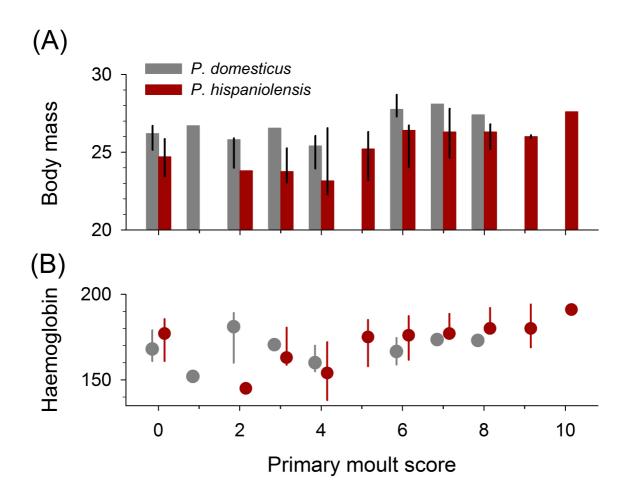
519				
520	Jenni-Eiermann S, Jenni, L, Piersma, T (2002) Temporal uncoupling of thyroid hormones in			
521	red knots: T3 peaks in cold weather, T4 during moult. J Ornithol 143: 331-340			
522				
523	Killen SS, Mitchell MD, Rummer JL, Chivers DP, Ferrari MCO, Meekan MG, McCormick			
524	MI (2014) Aerobic scope predicts dominance during early life in a tropical damselfish.			
525	Funct Ecol 28:1367-1376			
526				
527	Klaassen M (1995) Moult and basal metabolic costs in males of two subspecies of stonechats:			
528	The European Saxicola torquata rubicula and the East African S. t. axillaris. Oecologia			
529	104:424-432			
530				
531	Lasiewski RC (1963) Oxygen consumption of torpid, resting, active, and flying			
532	hummingbirds. Physiol Zool 36:122-140			
533				
534	Lindström Å, Visser GH, Daan S (1993) The energetic cost of feather synthesis is			
535	proportional to metabolic rate. Physiol Zool 66 :490-510			
536				
537	Marras S, Claireaux G, McKenzie DJ, Nelson JA (2010) Individual variation and			
538	repeatability in aerobic and anaerobic swimming performance of European seabass,			
539	Dicentrarchus labrax. J Exp Biol 213:26-32			
540				
541	McKechnie AE, Swanson DL (2010) Sources and significance of variation in basal, summit			
542	and maximal metabolic rate in birds. Current Zool 56:741-758			
543				
544	McKittrick J, Chen P-Y, Bodde SG, Yang W (2012) The structure, functions, and mechanical			
545	properties of keratin. JOM 64:449-468			
546				
547	McNabb, FMA (2007) The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in			
548	bird development and reproduction. Crit Rev Toxicol 37:163-193			
549				
550 551	Murphy EC (1985) Bergmanns's rule, seasonality, and geographic variation in body size of			
551	house sparrows. Evolution 39:1327-1334			
552 553	Murphy ME (1996) Energetics and nutrition of molt. In: Carey C (ed) Avian			
555 554	energetics and nutritional ecology. Plenum Press, New York, pp 158–198			
555	energetics and nutritional ecology. Flenum Fless, New Tork, pp 138–198			
556	Murphy ME, King, JR (1986) Diurnal constancy of feather growth rates in white-crowned			
557	sparrows exposed to various photoperiods and feeding schedules during the postnuptial			
558	molt. Can J Zool 64:1292-1294			
559	11011. Call J 2001 07.1272 - 1277			
560	Murphy ME, Taruscio TG (1995) Sparrows increase their rates of protein synthesis during			
561	the annual molt. Comp Biochem Physiol 111A:385-396			
562	and annual more. Comp Dicencin Physici PPPP. 500 570			
563	Murphy ME, King JR, Lu J (1988) Malnutrition during the postnuptial molt of white-			
564	crowned sparrows: feather growth and quality. Can J Zool 66:1403-1413			
565				
2.00				

566 567	Neufer PD (1989) The effect of detraining and reduced training on the physiological adaptations to aerobic exercise training. Sports Med 8:302-321
568	
569 570	Newton I (1966) The moult of the bullfinch Pyrrhula pyrrhula. Ibis 108:41-67
571	Nilsson J-A, Svensson E (1996) The cost of reproduction: a new link between current
572 573	reproductive effort and future reproductive success. Proc R Soc Lond B 263:711-714
574	R Core Team (2017). R: A language and environment for statistical computing. R Foundation
575 576	for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>
577	Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origin of standard
578 579	metabolic rate in mammals. Physiol Rev 77:731-758
580	Schleussner, G., Dittami, J.P., Gwinner, E (1985) Testosterone implants
581	affect molt in male European starlings, <i>Sturnus vulgaris</i> . Physiol Zool 58:597–604
582	aneet mort in male European starnings, <i>Starnus vargaris</i> . Thysiol 2001 58.577–004
583	Smith, JP (1982) Changes in blood levels of thyroid hormones in two species of passerine
584	birds. Condor 84:160-167
585	511d3. Condor 64.100-107
586	Taruscio TG, Murphy ME (1995) 3-Methylhistidine excretion by molting and non-molting
587	sparrows. Comp Biochem Physiol 111A:397-403
588	sparrows. Comp Dioenem r hysion 11111.597 105
589	Taylor CR, Maloiy GMO, Weibel ER, Langman VA, Kamau JMZ (1980) Design of the
590	mammalian respiratory system. III. Maximum aerobic capacity to body mass: wild and
591	domestic mammals. Resp Physiol 44:25-37
592	
593	Torre-Bueno JR, Larochelle J (1978) The metabolic cost of flight in unrestrained birds. J Exp
594	Biol 75:223-229
595	
596	Tucker, V (1968) Respiratory exchange and evaporative water loss in the flying budgerigar. J
597	Exp Biol 48:67-87
598	I manual second s
599	Turček FJ (1966) On plumage quality in birds. Ekologia Polska 14:617-633
600	
601	Vega Rivera JH, McShea WJ, Rappole JH, Haas CA (1998) Pattern and chronology of
602	prebasic molt for the wood thrush and its relation to reproduction and migration departure.
603	Wilson Bull 110:384-392
604	
605	Vezina F, Gustowska A, Jalvingh KM, Chastel O, Piersma T (2009) Hormonal consequences
606	and thermoregulatory consequences of molting on metabolic rate in a northerly wintering
607	shorebird. Physiol Zool 82:129-142
608	
609	Weber TP, Borgudd J, Hedenström A, Persson K, Sandberg G (2004) Biol Lett 1:27-30
610	

611 Wingfield JC (2008) Organisation of vertebrate annual cycles: implications for control
612 mechanisms. Philosophical Transactions of the Royal Society of London Series B613 Biological Sciences 363:425–441


- 615 Zeidler K (1966) Untersuchungen über Flügelbefiederung und Mauser des Haussperlings
 616 (*Passer domesticus* L.). J Ornithol 107:113-153
- 618 Zhang Y, Eyster K, Liu J-S, Swanson DL (2015) Cross-training in birds: cold and exercise
 619 training produce similar changes in maximal metabolic output, muscle masses and
 620 myostatin expression in house sparrows (*Passer domesticus*). J Exp Biol 218:2190-2200.

622	Figure	Legends


024	
625	Figure 1. Upper panel: Distribution of primary feather moult scores of Passer
626	hispaniolensis and P. domesticus in relation to our three periods of sampling. The
627	proportion of birds having a particular moult score is represented by the relative size of
628	each sphere, with the total area of spheres in each period totaling 100% for each
629	species. Lower panel: Number of birds sampled for each period in relation to date of
630	sampling.
631	
632	
633	Figure 2. Upper panel: Body mass of Passer hispaniolensis and P. domesticus at
634	conclusion of overnight RMR_{min} determinations. Lower panel: Blood haemoglobin
635	content (mg/l) in relation to primary feather moult score. Values are depicted as
636	medians with vertical bars representing 25^{th} and 75^{th} percentiles.
637	
638	
639	Figure 3. Upper panel: Minimum resting metabolic rate (RMR_{min}) and maximum
640	metabolic rate (MMR) of Passer domesticus and Passer hispaniolensis in relation to
641	primary feather moult score. Lower panel: Absolute aerobic scope (ml $O_2 min^{-1}$) of
642	Passer domesticus and Passer hispaniolensis in relation to primary feather moult score.
643	Values are depicted as medians with vertical bars representing 25^{th} and 75^{th}

644 percentiles.

