Conference paper Open Access
Igor Kotsiuba;
Inna Skarga-Bandurova;
Alkiviadis Giannakoulias;
Mykhailo Chaikin;
Aleksandar Jevremovic
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <controlfield tag="005">20200612221821.0</controlfield> <controlfield tag="001">3891124</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">School of Engineering, Computing and Mathematics Oxford Brookes University Oxford, United Kingdom</subfield> <subfield code="0">(orcid)0000-0003-3458-8730</subfield> <subfield code="a">Inna Skarga-Bandurova</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">School of Electrical and Computing Engineering National Technical University of Athens Athens, Greece</subfield> <subfield code="a">Alkiviadis Giannakoulias</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">CRDF Global, Kyiv, Ukraine</subfield> <subfield code="a">Mykhailo Chaikin</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">IEEE member, Serbia</subfield> <subfield code="a">Aleksandar Jevremovic</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">383505</subfield> <subfield code="z">md5:90814560f9ae7f2dab9aeee8ede606fc</subfield> <subfield code="u">https://zenodo.org/record/3891124/files/[13] Technique for Finding and Investigating the Strongest Combinations of Cyberattacks on Smart Grid Infrastructure.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-02-24</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-h2020_spear_project</subfield> <subfield code="o">oai:zenodo.org:3891124</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">G.E. Pukhov Institute for Modeling in Energy Engineering, National Academy of Sciences of Ukraine Kyiv, Ukraine</subfield> <subfield code="a">Igor Kotsiuba</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Technique for Finding and Investigating the Strongest Combinations of Cyberattacks on Smart Grid Infrastructure</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-h2020_spear_project</subfield> </datafield> <datafield tag="536" ind1=" " ind2=" "> <subfield code="c">787011</subfield> <subfield code="a">SPEAR: Secure and PrivatE smArt gRid</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Recently, smart grids have become a vector of&nbsp;the energy policy of many countries. Due to structural and&nbsp;operation features, smart grids are a constant target of&nbsp;combined and simultaneous cyberattacks. To maximize security&nbsp;and to optimize existing network schemes to prevent cyber&nbsp;intrusion, in this paper, we propose an approach to decision&nbsp;support in finding and identifying the most potent attack&nbsp;combinations that can set the system to maximum damage. The&nbsp;main purpose is to identify the most severe combinations of attacks on smart grid components that potentially can be&nbsp;implemented from the perspective of the attacker. In this&nbsp;context, the problem of finding weaknesses points in the&nbsp;network configuration of a smart grid and assessing the impact&nbsp;of events on cyberinfrastructure is considered. The technique&nbsp;for detecting and investigating the strongest combinations of&nbsp;cyberattacks on the smart grid network is given with an&nbsp;example of the analysis of the spread of pandemic software in a&nbsp;system with arbitrary structure.&nbsp;</p></subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.1109/bigdata47090.2019.9006335</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
Views | 35 |
Downloads | 69 |
Data volume | 26.5 MB |
Unique views | 32 |
Unique downloads | 65 |