Conference paper Open Access

Technique for Finding and Investigating the Strongest Combinations of Cyberattacks on Smart Grid Infrastructure

Igor Kotsiuba; Inna Skarga-Bandurova; Alkiviadis Giannakoulias; Mykhailo Chaikin; Aleksandar Jevremovic


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3891124</identifier>
  <creators>
    <creator>
      <creatorName>Igor Kotsiuba</creatorName>
      <affiliation>G.E. Pukhov Institute for Modeling in  Energy Engineering, National Academy  of Sciences of Ukraine  Kyiv, Ukraine</affiliation>
    </creator>
    <creator>
      <creatorName>Inna Skarga-Bandurova</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3458-8730</nameIdentifier>
      <affiliation>School of Engineering, Computing and  Mathematics   Oxford Brookes University   Oxford, United Kingdom</affiliation>
    </creator>
    <creator>
      <creatorName>Alkiviadis Giannakoulias</creatorName>
      <affiliation>School of Electrical and Computing  Engineering   National Technical University of  Athens  Athens, Greece</affiliation>
    </creator>
    <creator>
      <creatorName>Mykhailo Chaikin</creatorName>
      <affiliation>CRDF Global, Kyiv, Ukraine</affiliation>
    </creator>
    <creator>
      <creatorName>Aleksandar Jevremovic</creatorName>
      <affiliation>IEEE member, Serbia</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Technique for Finding and Investigating the  Strongest Combinations of Cyberattacks on Smart  Grid Infrastructure</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-02-24</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3891124</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/bigdata47090.2019.9006335</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/h2020_spear_project</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Recently, smart grids have become a vector of&amp;nbsp;the energy policy of many countries. Due to structural and&amp;nbsp;operation features, smart grids are a constant target of&amp;nbsp;combined and simultaneous cyberattacks. To maximize security&amp;nbsp;and to optimize existing network schemes to prevent cyber&amp;nbsp;intrusion, in this paper, we propose an approach to decision&amp;nbsp;support in finding and identifying the most potent attack&amp;nbsp;combinations that can set the system to maximum damage. The&amp;nbsp;main purpose is to identify the most severe combinations of attacks on smart grid components that potentially can be&amp;nbsp;implemented from the perspective of the attacker. In this&amp;nbsp;context, the problem of finding weaknesses points in the&amp;nbsp;network configuration of a smart grid and assessing the impact&amp;nbsp;of events on cyberinfrastructure is considered. The technique&amp;nbsp;for detecting and investigating the strongest combinations of&amp;nbsp;cyberattacks on the smart grid network is given with an&amp;nbsp;example of the analysis of the spread of pandemic software in a&amp;nbsp;system with arbitrary structure.&amp;nbsp;&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/787011/">787011</awardNumber>
      <awardTitle>SPEAR: Secure and PrivatE smArt gRid</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
35
69
views
downloads
Views 35
Downloads 69
Data volume 26.5 MB
Unique views 32
Unique downloads 65

Share

Cite as