Software Open Access
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <controlfield tag="005">20210317064229.0</controlfield> <controlfield tag="001">3891101</controlfield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">1825331</subfield> <subfield code="z">md5:7e8d339f19c1baea8b9f51e658f0ca65</subfield> <subfield code="u">https://zenodo.org/record/3891101/files/opannekoucke/pdenetgen-1.0.1.zip</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-06-12</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">software</subfield> <subfield code="o">oai:zenodo.org:3891101</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">INPT-ENM, UMR CNRS CNRM 3589, CERFACS</subfield> <subfield code="0">(orcid)0000-0002-3249-2818</subfield> <subfield code="a">Olivier Pannekoucke</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">opannekoucke/pdenetgen: pde-netgen-GMD</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html</subfield> <subfield code="a">CeCILL-B Free Software License Agreement</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.</p> <ul> <li>Olivier Pannekoucke and Ronan Fablet. &quot;<a href="https://doi.org/10.5194/gmd-2020-35">PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations</a>&quot;, Geoscientific Model Development (2020) https://doi.org/10.5194/gmd-2020-35</li> </ul> <p><strong>Description of the version</strong></p> <p>Version of the package based on tensorflow.keras, where neural network can be generated by using <code>TrainableScalar</code> or exogenous network.</p> <p><strong>Examples</strong></p> <p>As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">url</subfield> <subfield code="i">isSupplementTo</subfield> <subfield code="a">https://github.com/opannekoucke/pdenetgen/tree/1.0.1</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.3891100</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.3891101</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">software</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 102 | 102 |
Downloads | 26 | 26 |
Data volume | 47.5 MB | 47.5 MB |
Unique views | 85 | 85 |
Unique downloads | 24 | 24 |