Software Open Access

opannekoucke/pdenetgen: pde-netgen-GMD

Olivier Pannekoucke

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Olivier Pannekoucke</dc:creator>
  <dc:description>Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.

	Olivier Pannekoucke and Ronan Fablet. "PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations", Geoscientific Model Development (2020)

Description of the version

Version of the package based on tensorflow.keras, where neural network can be generated by using TrainableScalar or exogenous network.


As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.</dc:description>
  <dc:title>opannekoucke/pdenetgen: pde-netgen-GMD</dc:title>
All versions This version
Views 102102
Downloads 2626
Data volume 47.5 MB47.5 MB
Unique views 8585
Unique downloads 2424


Cite as