Software Open Access

opannekoucke/pdenetgen: pde-netgen-GMD

Olivier Pannekoucke


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/027c01f6-d809-4243-bc6f-2bdf0a9cbfc1/opannekoucke/pdenetgen-1.0.1.zip"
      }, 
      "checksum": "md5:7e8d339f19c1baea8b9f51e658f0ca65", 
      "bucket": "027c01f6-d809-4243-bc6f-2bdf0a9cbfc1", 
      "key": "opannekoucke/pdenetgen-1.0.1.zip", 
      "type": "zip", 
      "size": 1825331
    }
  ], 
  "owners": [
    107152
  ], 
  "doi": "10.5281/zenodo.3891101", 
  "stats": {
    "version_unique_downloads": 24.0, 
    "unique_views": 85.0, 
    "views": 102.0, 
    "version_views": 102.0, 
    "unique_downloads": 24.0, 
    "version_unique_views": 85.0, 
    "volume": 47458606.0, 
    "version_downloads": 26.0, 
    "downloads": 26.0, 
    "version_volume": 47458606.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3891101", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3891100", 
    "bucket": "https://zenodo.org/api/files/027c01f6-d809-4243-bc6f-2bdf0a9cbfc1", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3891100.svg", 
    "html": "https://zenodo.org/record/3891101", 
    "latest_html": "https://zenodo.org/record/3891101", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3891101.svg", 
    "latest": "https://zenodo.org/api/records/3891101"
  }, 
  "conceptdoi": "10.5281/zenodo.3891100", 
  "created": "2020-06-12T10:27:15.630005+00:00", 
  "updated": "2021-03-17T06:42:29.913133+00:00", 
  "conceptrecid": "3891100", 
  "revision": 9, 
  "id": 3891101, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3891101", 
    "description": "<p>Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.</p>\n\n<ul>\n\t<li>Olivier Pannekoucke and Ronan Fablet. &quot;<a href=\"https://doi.org/10.5194/gmd-2020-35\">PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations</a>&quot;, Geoscientific Model Development (2020) https://doi.org/10.5194/gmd-2020-35</li>\n</ul>\n\n<p><strong>Description of the version</strong></p>\n\n<p>Version of the package based on tensorflow.keras, where neural network can be generated by using <code>TrainableScalar</code> or exogenous network.</p>\n\n<p><strong>Examples</strong></p>\n\n<p>As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.</p>", 
    "license": {
      "id": "CECILL-B"
    }, 
    "title": "opannekoucke/pdenetgen: pde-netgen-GMD", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3891100"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3891101"
          }
        }
      ]
    }, 
    "version": "1.0.1", 
    "publication_date": "2020-06-12", 
    "creators": [
      {
        "orcid": "0000-0002-3249-2818", 
        "affiliation": "INPT-ENM, UMR CNRS CNRM 3589, CERFACS", 
        "name": "Olivier Pannekoucke"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "software", 
      "title": "Software"
    }, 
    "related_identifiers": [
      {
        "scheme": "url", 
        "identifier": "https://github.com/opannekoucke/pdenetgen/tree/1.0.1", 
        "relation": "isSupplementTo"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3891100", 
        "relation": "isVersionOf"
      }
    ]
  }
}
102
26
views
downloads
All versions This version
Views 102102
Downloads 2626
Data volume 47.5 MB47.5 MB
Unique views 8585
Unique downloads 2424

Share

Cite as