Software Open Access
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/027c01f6-d809-4243-bc6f-2bdf0a9cbfc1/opannekoucke/pdenetgen-1.0.1.zip" }, "checksum": "md5:7e8d339f19c1baea8b9f51e658f0ca65", "bucket": "027c01f6-d809-4243-bc6f-2bdf0a9cbfc1", "key": "opannekoucke/pdenetgen-1.0.1.zip", "type": "zip", "size": 1825331 } ], "owners": [ 107152 ], "doi": "10.5281/zenodo.3891101", "stats": { "version_unique_downloads": 24.0, "unique_views": 85.0, "views": 102.0, "version_views": 102.0, "unique_downloads": 24.0, "version_unique_views": 85.0, "volume": 47458606.0, "version_downloads": 26.0, "downloads": 26.0, "version_volume": 47458606.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.3891101", "conceptdoi": "https://doi.org/10.5281/zenodo.3891100", "bucket": "https://zenodo.org/api/files/027c01f6-d809-4243-bc6f-2bdf0a9cbfc1", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3891100.svg", "html": "https://zenodo.org/record/3891101", "latest_html": "https://zenodo.org/record/3891101", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3891101.svg", "latest": "https://zenodo.org/api/records/3891101" }, "conceptdoi": "10.5281/zenodo.3891100", "created": "2020-06-12T10:27:15.630005+00:00", "updated": "2021-03-17T06:42:29.913133+00:00", "conceptrecid": "3891100", "revision": 9, "id": 3891101, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.3891101", "description": "<p>Bridging physics and deep learning is a topical challenge. While deep learning frameworks open avenues in physical science, the design of physically-consistent deep neural network architectures is an open issue. In the spirit of physics-informed NNs, PDE-NetGen package provides new means to automatically translate physical equations, given as PDEs, into neural network architectures. PDE-NetGen combines symbolic calculus and a neural network generator. The later exploits NN-based implementations of PDE solvers using Keras. With some knowledge of a problem, PDE-NetGen is a plug-and-play tool to generate physics-informed NN architectures. They provide computationally-efficient yet compact representations to address a variety of issues, including among others adjoint derivation, model calibration, forecasting, data assimilation as well as uncertainty quantification.</p>\n\n<ul>\n\t<li>Olivier Pannekoucke and Ronan Fablet. "<a href=\"https://doi.org/10.5194/gmd-2020-35\">PDE-NetGen 1.0: from symbolic PDE representations of physical processes to trainable neural network representations</a>", Geoscientific Model Development (2020) https://doi.org/10.5194/gmd-2020-35</li>\n</ul>\n\n<p><strong>Description of the version</strong></p>\n\n<p>Version of the package based on tensorflow.keras, where neural network can be generated by using <code>TrainableScalar</code> or exogenous network.</p>\n\n<p><strong>Examples</strong></p>\n\n<p>As an illustration, the workflow is first presented for the 2D diffusion equation, then applied to the data-driven and physics-informed identification of uncertainty dynamics for the Burgers equation.</p>", "license": { "id": "CECILL-B" }, "title": "opannekoucke/pdenetgen: pde-netgen-GMD", "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "3891100" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "3891101" } } ] }, "version": "1.0.1", "publication_date": "2020-06-12", "creators": [ { "orcid": "0000-0002-3249-2818", "affiliation": "INPT-ENM, UMR CNRS CNRM 3589, CERFACS", "name": "Olivier Pannekoucke" } ], "access_right": "open", "resource_type": { "type": "software", "title": "Software" }, "related_identifiers": [ { "scheme": "url", "identifier": "https://github.com/opannekoucke/pdenetgen/tree/1.0.1", "relation": "isSupplementTo" }, { "scheme": "doi", "identifier": "10.5281/zenodo.3891100", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 102 | 102 |
Downloads | 26 | 26 |
Data volume | 47.5 MB | 47.5 MB |
Unique views | 85 | 85 |
Unique downloads | 24 | 24 |